

GCC Python plugin

Contents:

	Requirements

	Prebuilt-packages

	Building the plugin from source
	Build-time dependencies

	Building the code

	Basic usage of the plugin
	Debugging your script

	Accessing parameters

	Adding new passes to the compiler

	Wiring up callbacks

	Global data access

	Overview of GCC’s internals

	Example scripts
	show-docs.py

	show-passes.py

	show-gimple.py

	show-ssa.py

	show-callgraph.py

	Working with C code
	“Hello world”

	Spell-checking string constants within source code

	Finding global variables

	Locations

	Generating custom errors and warnings

	Working with functions and control flow graphs

	gcc.Tree and its subclasses
	Blocks

	Declarations

	Types

	Constants

	Binary Expressions

	Unary Expressions

	Comparisons

	References to storage

	Other expression subclasses

	Statements

	SSA Names

	Gimple statements

	Optimization passes
	Working with existing passes

	Creating new optimization passes

	Dumping per-pass information

	Working with callbacks

	Creating custom GCC attributes
	Using the preprocessor to guard attribute usage

	Usage example: a static analysis tool for CPython extension code
	gcc-with-cpychecker

	Reference-count checking

	Error-handling checking

	Errors in exception-handling

	Format string checking

	Verification of PyMethodDef tables

	Additional tests

	Limitations and caveats

	Ideas for future tests

	Reusing this code for other projects

	Common mistakes

	Success Stories
	The GNU Debugger

	LibreOffice

	psycopg

	pycups

	python-krbV

	Bugs found in itself

	Getting Involved
	Ideas for using the plugin

	Tour of the C code

	Using the plugin to check itself

	Test suite

	Debugging the plugin’s C code

	Patches

	Documentation

	Miscellanea
	Interprocedural analysis (IPA)

	Whole-program Analysis via Link-Time Optimization (LTO)

	Inspecting GCC’s command-line options

	Working with GCC’s tunable parameters

	Working with the preprocessor

	Version handling

	Register Transfer Language (RTL)

	Release Notes
	0.16

	0.15

	0.14

	0.13

	0.12

	0.11

	0.10

	0.9

	0.8

	0.7

	Appendices
	All of GCC’s passes

	gcc.Tree operators by symbol

This document describes the Python plugin I’ve written for GCC. In theory the
plugin allows you to write Python scripts that can run inside GCC as it
compiles code, exposing GCC’s internal data structures as a collection of
Python classes and functions. The bulk of the document describes the Python API
it exposes.

Hopefully this will be of use for writing domain-specific warnings, static
analysers, and the like, and for rapid prototyping of new GCC features.

I’ve tried to stay close to GCC’s internal representation, but using classes.
I hope that the resulting API is pleasant to work with.

The plugin is a work-in-progress; the API may well change.

Bear in mind that writing this plugin has been the first time I have worked
with the insides of GCC. I have only wrapped the types I have needed, and
within them, I’ve only wrapped properties that seemed useful to me. There may
well be plenty of interesting class and properties for instances that can be
added (patches most welcome!). I may also have misunderstood how things work.

Most of my development has been against Python 2 (2.7, actually), but I’ve tried
to make the source code of the plugin buildable against both Python 2 and
Python 3 (3.2), giving separate python2.so and python3.so plugins. (I suspect
that it’s only possible to use one or the other within a particular invocation
of “gcc”, due to awkward dynamic-linker symbol collisions between the two
versions of Python).

The plugin is Free Software, licensed under the GPLv3 (or later).

Indices and tables

	Index

	Module Index

	Search Page

Requirements

The plugin has the following requirements:

	GCC: 4.6 or later (it uses APIs that weren’t exposed to plugins in 4.5)

	Python: requires 2.7 or 3.2 or later

	“six”: The libcpychecker code uses the “six” Python compatibility library to
smooth over Python 2 vs Python 3 differences, both at build-time and
run-time:

http://pypi.python.org/pypi/six/

	“pygments”: The libcpychecker code uses the “pygments” Python
syntax-highlighting library when writing out error reports:

http://pygments.org/

	“lxml”: The libcpychecker code uses the “lxml” internally when writing
out error reports.

	graphviz: many of the interesting examples use “dot” to draw diagrams
(e.g. control-flow graphs), so it’s worth having graphviz installed.

Prebuilt-packages

Various distributions ship with pre-built copies of the plugin. If you’re
using Fedora, you can install the plugin via RPM on Fedora 16 onwards using:

yum install gcc-python2-plugin

as root for the Python 2 build of the plugin, or:

yum install gcc-python3-plugin

for the Python 3 build of the plugin.

On Gentoo, use layman to add the dMaggot overlay and emerge the
gcc-python-plugin package. This will build the plugin for Python 2 and
Python 3 should you have both of them installed in your system. A live
ebuild is also provided to install the plugin from git sources.

Building the plugin from source

Build-time dependencies

If you plan to build the plugin from scratch, you’ll need the build-time
dependencies.

On a Fedora box you can install them by running the following as root:

yum install gcc-plugin-devel python-devel python-six python-pygments graphviz

for building against Python 2, or:

yum install gcc-plugin-devel python3-devel python3-six python3-pygments graphviz

when building for Python 3.

Building the code

You can obtain the source code from git by using:

$ git clone git@github.com:davidmalcolm/gcc-python-plugin.git

To build the plugin, run:

make plugin

To build the plugin and run the selftests, run:

make

You can also use:

make demo

to demonstrate the new compiler errors.

By default, the Makefile builds the plugin using the first python-config
tool found in $PATH (e.g. /usr/bin/python-config), which is typically the
system copy of Python 2. You can override this (e.g. to build against
Python 3) by overriding the PYTHON and PYTHON_CONFIG Makefile variables
with:

make PYTHON=python3 PYTHON_CONFIG=python3-config

There isn’t a well-defined process yet for installing the plugin (though the
rpm specfile in the source tree contains some work-in-progress towards this).

Some notes on GCC plugins can be seen at http://gcc.gnu.org/wiki/plugins and
http://gcc.gnu.org/onlinedocs/gccint/Plugins.html

Note

Unfortunately, the layout of the header files for GCC plugin
development has changed somewhat between different GCC releases. In
particular, older builds of GCC flattened the “c-family” directory in the
installed plugin headers.

This was fixed in this GCC commit:

http://gcc.gnu.org/viewcvs?view=revision&revision=176741

So if you’re using an earlier build of GCC using the old layout you’ll need
to apply the following patch (reversed with “-R”) to the plugin’s source
tree to get it to compile:

$ git show 215730cbec40a6fe482fabb7f1ecc3d747f1b5d2 | patch -p1 -R

If you have a way to make the plugin’s source work with either layout,
please email the plugin’s mailing list [https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/]

Basic usage of the plugin

Once you’ve built the plugin, you can invoke a Python script like this:

gcc -fplugin=./python.so -fplugin-arg-python-script=PATH_TO_SCRIPT.py OTHER_ARGS

and have it run your script as the plugin starts up.

Alternatively, you can run a one-shot Python command like this:

gcc -fplugin=./python.so -fplugin-arg-python-command="python code" OTHER_ARGS

such as:

gcc -fplugin=./python.so -fplugin-arg-python-command="import sys; print(sys.path)" OTHER_ARGS

The plugin automatically adds the absolute path to its own directory to the
end of its sys.path, so that it can find support modules, such as gccutils.py
and libcpychecker.

There is also a helper script, gcc-with-python, which expects a python script
as its first argument, then regular gcc arguments:

./gcc-with-python PATH_TO_SCRIPT.py other args follow

For example, this command will use graphviz to draw how GCC “sees” the
internals of each function in test.c (within its SSA representation):

./gcc-with-python examples/show-ssa.py test.c

Most of the rest of this document describes the Python API visible for
scripting.

The plugin GCC’s various types as Python objects, within a “gcc” module. You
can see the API by running the following within a script:

import gcc
help(gcc)

To make this easier, there’s a script to do this for you:

./gcc-python-docs

from where you can review the built-in documentation strings (this document
may be easier to follow though).

The exact API is still in flux: and may well change (this is an early version
of the code; we may have to change things as GCC changes in future releases
also).

Debugging your script

You can place a forced breakpoint in your script using this standard Python
one-liner:

import pdb; pdb.set_trace()

If Python reaches this location it will interrupt the compile and put you
within the pdb interactive debugger, from where you can investigate.

See http://docs.python.org/library/pdb.html#debugger-commands for more
information.

If an exception occurs during Python code, and isn’t handled by a try/except
before returning into the plugin, the plugin prints the traceback to stderr and
treats it as an error:

/home/david/test.c: In function ‘main’:
/home/david/test.c:28:1: error: Unhandled Python exception raised within callback
Traceback (most recent call last):
 File "test.py", line 38, in my_pass_execution_callback
 dot = gccutils.tree_to_dot(fun)
NameError: global name 'gccutils' is not defined

(In this case, it was a missing import statement in the script)

GCC reports errors at a particular location within the source code. For an
unhandled exception such as the one above, by default, the plugin reports
the error as occurring as the top of the current source function (or the last
location within the current source file for passes and callbacks that aren’t
associated with a function).

You can override this using gcc.set_location:

	
gcc.set_location(loc)

	Temporarily overrides the error-reporting location, so that if an exception
occurs, it will use this gcc.Location, rather than the default. This may
be of use when debugging tracebacks from scripts. The location is reset
each time after returning from Python back to the plugin, after printing
any traceback.

Accessing parameters

	
gcc.argument_dict

	Exposes the arguments passed to the plugin as a dictionary.

For example, running:

gcc -fplugin=python.so \
 -fplugin-arg-python-script=test.py \
 -fplugin-arg-python-foo=bar

with test.py containing:

import gcc
print(gcc.argument_dict)

has output:

{'script': 'test.py', 'foo': 'bar'}

	
gcc.argument_tuple

	Exposes the arguments passed to the plugin as a tuple of (key, value) pairs,
so you have ordering. (Probably worth removing, and replacing
argument_dict with an OrderedDict instead; what about
duplicate args though?)

Adding new passes to the compiler

You can create new compiler passes by subclassing the appropriate
gcc.Pass subclasss. For example, here’s how to wire up a new pass
that displays the control flow graph of each function:

Show the GIMPLE form of each function, using GraphViz
import gcc
from gccutils import get_src_for_loc, cfg_to_dot, invoke_dot

We'll implement this as a custom pass, to be called directly after the
builtin "cfg" pass, which generates the CFG:

class ShowGimple(gcc.GimplePass):
 def execute(self, fun):
 # (the CFG should be set up by this point, and the GIMPLE is not yet
 # in SSA form)
 if fun and fun.cfg:
 dot = cfg_to_dot(fun.cfg, fun.decl.name)
 # print dot
 invoke_dot(dot, name=fun.decl.name)

ps = ShowGimple(name='show-gimple')
ps.register_after('cfg')

For more information, see Creating new optimization passes

Wiring up callbacks

The other way to write scripts is to register callback functions
to be called when various events happen during compilation, such as using
gcc.PLUGIN_PASS_EXECUTION to piggyback off of an existing GCC pass.

Show all the passes that get executed
import gcc

def my_pass_execution_callback(*args, **kwargs):
 (optpass, fun) = args
 print(args)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
 my_pass_execution_callback)

For more information, see Working with callbacks

Global data access

	
gcc.get_variables()

	Get all variables in this compilation unit as a list of
gcc.Variable

	
class gcc.Variable

	Wrapper around GCC’s struct varpool_node, representing a variable in
the code being compiled.

	
decl

	The declaration of this variable, as a gcc.Tree

	
gccutils.get_variables_as_dict()

	Get a dictionary of all variables, where the keys are the variable names
(as strings), and the values are instances of gcc.Variable

	
gcc.maybe_get_identifier(str)

	Get the gcc.IdentifierNode with this name, if it exists,
otherwise None. (However, after the front-end has run, the identifier
node may no longer point at anything useful to you; see
gccutils.get_global_typedef() for an example of working
around this)

	
gcc.get_translation_units()

	Get a list of all gcc.TranslationUnitDecl for the compilation
units within this invocation of GCC (that’s “source code files” for the
layperson).

	
class TranslationUnitDecl

	Subclass of gcc.Tree representing a compilation unit

	
block

	The gcc.Block representing global scope within this
source file.

	
language

	The source language of this translation unit, as a string
(e.g. “GNU C”)

	
gcc.get_global_namespace()

	C++ only: locate the gcc.NamespaceDecl for the global
namespace (a.k.a. “::”)

	
gccutils.get_global_typedef(name)

	Given a string name, look for a C/C++ typedef in global scope with
that name, returning it as a gcc.TypeDecl, or None if it
wasn’t found

	
gccutils.get_global_vardecl_by_name(name)

	Given a string name, look for a C/C++ variable in global scope with
that name, returning it as a gcc.VarDecl, or None if it
wasn’t found

	
gccutils.get_field_by_name(decl, name)

	Given one of a gcc.RecordType, gcc.UnionType, or
gcc.QualUnionType, along with a string name, look for a
field with that name within the given struct or union, returning it as a
gcc.FieldDecl, or None if it wasn’t found

Overview of GCC’s internals

To add a new compiler warning to GCC, it’s helpful to have a high-level
understanding of how GCC works, so here’s the 10,000 foot view of how GCC turns
source code into machine code.

The short version is that GCC applies a series of optimization passes to your
code, gradually converting it from a high-level representation into machine
code, via several different internal representations.

Each programming language supported by GCC has a “frontend”, which parses the
source files.

For the case of C and C++, the preprocessor manipulates the code first
before the frontend sees it. You can see the preprocessor output with the
-E option.

Exactly what happens in each frontend varies by language: some language
frontends emit language-specific trees, and some convert to a
language-independent tree representation known as GENERIC. In any case, we
eventually we reach a representation known as GIMPLE. The GIMPLE
representation contains simplified operations, with temporary variables added as
necessary to avoid nested sub-expressions.

For example, given this C code:

int
main(int argc, char **argv)
{
 int i;

 printf("argc: %i\n", argc);

 for (i = 0; i < argc; i++) {
 printf("argv[%i]: %s\n", argv[i]);
 }

 helper_function();

 return 0;
}

we can see a dump of a C-like representation of the GIMPLE form by passing
-fdump-tree-gimple to the command-line:

$ gcc -fdump-tree-gimple test.c
$ cat test.c.004t.gimple

giving something like this:

main (int argc, char * * argv)
{
 const char * restrict D.3258;
 long unsigned int D.3259;
 long unsigned int D.3260;
 char * * D.3261;
 char * D.3262;
 const char * restrict D.3263;
 int D.3264;
 int i;

 D.3258 = (const char * restrict) &"argc: %i\n"[0];
 printf (D.3258, argc);
 i = 0;
 goto <D.2050>;
 <D.2049>:
 D.3259 = (long unsigned int) i;
 D.3260 = D.3259 * 8;
 D.3261 = argv + D.3260;
 D.3262 = *D.3261;
 D.3263 = (const char * restrict) &"argv[%i]: %s\n"[0];
 printf (D.3263, D.3262);
 i = i + 1;
 <D.2050>:
 if (i < argc) goto <D.2049>; else goto <D.2051>;
 <D.2051>:
 helper_function ();
 D.3264 = 0;
 return D.3264;
}

It’s far easier to see the GIMPLE using:

./gcc-with-python examples/show-gimple.py test.c

which generates bitmaps showing the “control flow graph” of the functions in
the file, with source on the left-hand side, and GIMPLE on the right-hand side:

[image: image of a control flow graph in GIMPLE form]

Each function is divided into “basic blocks”. Each basic block consists of a
straight-line sequence of code with a single entrypoint and exit: all branching
happens between basic blocks, not within them. The basic blocks form a
“control flow graph” of basic blocks, linked together by edges. Each block
can contain a list of gcc.Gimple statements.

You can work with this representation from Python using gcc.Cfg

Once the code is in GIMPLE form, GCC then attempts a series of optimizations on
it.

Some of these optimizations are listed here:
http://gcc.gnu.org/onlinedocs/gccint/Tree-SSA-passes.html

If you’re looking to add new compiler warnings, it’s probably best to hook
your code into these early passes.

The GIMPLE representation actually has several forms:

	an initial “high gimple” form, potentially containing certain high-level
operations (e.g. control flow, exception handling)

	the lower level gimple forms, as each of these operations are rewritten
in lower-level terms (turning control flow from jumps into a CFG etc)

	the SSA form of GIMPLE. In Static Single Assignment form, every variable
is assigned to at most once, with additional versions of variables added
to help track the impact of assignments on the data flowing through
a function. See http://gcc.gnu.org/onlinedocs/gccint/SSA.html

You can tell what form a function is in by looking at the flags of the current
pass. For example:

if ps.properties_provided & gcc.PROP_cfg:
 # ...then this gcc.Function ought to have a gcc.Cfg:
 do_something_with_cfg(fn.cfg)

if ps.properties_provided & gcc.PROP_ssa:
 # ...then we have SSA data
 do_something_with_ssa(fn)

Here’s our example function, after conversion to GIMPLE SSA:

./gcc-with-python examples/show-ssa.py test.c

[image: image of a control flow graph in GIMPLE SSA form]

You can see that the local variable i has been split into three versions:

	i_4, assigned to in block 2

	i_11, assigned to at the end of block 3

	i_1, assigned to at the top of block 4.

As is normal with SSA, GCC inserts fake functions known as “PHI” at the start
of basic blocks where needed in order to merge the multiple possible values of
a variable. You can see one in our example at the top of the loop in block 4:

i_1 = PHI <i_4(2), i_11(3)>

where i_1 either gets the value of i_4, or of i_11, depending on whether we
reach here via block 2 (at the start of the iteration) or block 3 (continuing
the “for” loop).

After these optimizations passes are done, GCC converts the GIMPLE SSA
representation into a lower-level representation known as Register Transfer
Language (RTL). This is probably too low-level to be of interest to those
seeking to add new compiler warnings: at this point it’s attempting to work
with the available opcodes and registers on the target CPU with the aim of
generating efficient machine code.

See http://gcc.gnu.org/onlinedocs/gccint/RTL.html

The RTL form uses the same Control Flow Graph machinery as the GIMPLE
representation, but with RTL expressions within the basic blocks.

Once in RTL, GCC applies a series of further optimizations, before finally
generating assembly language (which it submits to as, the GNU assembler):
http://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html
You can see the assembly language using the -S command line option.

$./gcc -S test.c
$ cat test.s

Example scripts

There are various sample scripts located in the examples subdirectory.

Once you’ve built the plugin (with make), you can run them via:

$./gcc-with-python examples/NAME-OF-SCRIPT.py test.c

show-docs.py

A trivial script to make it easy to read the builtin documentation for the
gcc API:

$./gcc-with-python examples/show-docs.py test.c

with this source:

import gcc
help(gcc)

giving output:

Help on built-in module gcc:

NAME
 gcc

FILE
 (built-in)

CLASSES
 __builtin__.object
 BasicBlock
 Cfg
 Edge
 Function
 Gimple
(truncated)

show-passes.py

You can see the passes being executed via:

$./gcc-with-python examples/show-passes.py test.c

This is a simple script that registers a trivial callback:

Sample python script, to be run by our gcc plugin
Show all the passes that get executed
import gcc

def my_pass_execution_callback(*args, **kwargs):
 (optpass, fun) = args
 print(args)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
 my_pass_execution_callback)

Sample output, showing passes being called on two different functions (main
and helper_function):

(gcc.GimplePass(name='*warn_unused_result'), gcc.Function('main'))
(gcc.GimplePass(name='omplower'), gcc.Function('main'))
(gcc.GimplePass(name='lower'), gcc.Function('main'))
(gcc.GimplePass(name='eh'), gcc.Function('main'))
(gcc.GimplePass(name='cfg'), gcc.Function('main'))
(gcc.GimplePass(name='*warn_function_return'), gcc.Function('main'))
(gcc.GimplePass(name='*build_cgraph_edges'), gcc.Function('main'))
(gcc.GimplePass(name='*warn_unused_result'), gcc.Function('helper_function'))
(gcc.GimplePass(name='omplower'), gcc.Function('helper_function'))
(gcc.GimplePass(name='lower'), gcc.Function('helper_function'))
(gcc.GimplePass(name='eh'), gcc.Function('helper_function'))
(gcc.GimplePass(name='cfg'), gcc.Function('helper_function'))
[...truncated...]

show-gimple.py

A simple script for viewing each function in the source file after it’s been
converted to “GIMPLE” form, using GraphViz to visualize the control flow graph:

$./gcc-with-python examples/show-gimple.py test.c

It will generate a file test.png for each function, and opens it in an image
viewer.

[image: image of a control flow graph in GIMPLE form]

The Python code for this is:

Show the GIMPLE form of each function, using GraphViz
import gcc
from gccutils import get_src_for_loc, cfg_to_dot, invoke_dot

We'll implement this as a custom pass, to be called directly after the
builtin "cfg" pass, which generates the CFG:

class ShowGimple(gcc.GimplePass):
 def execute(self, fun):
 # (the CFG should be set up by this point, and the GIMPLE is not yet
 # in SSA form)
 if fun and fun.cfg:
 dot = cfg_to_dot(fun.cfg, fun.decl.name)
 # print dot
 invoke_dot(dot, name=fun.decl.name)

ps = ShowGimple(name='show-gimple')
ps.register_after('cfg')

show-ssa.py

This is similar to show-gimple.py, but shows each function after the GIMPLE
has been converted to Static Single Assignment form (“SSA”):

$./gcc-with-python examples/show-ssa.py test.c

As before, it generates an image file for each function and opens it in a
viewer.

[image: image of a control flow graph in GIMPLE SSA form]

The Python code for this is:

Sample python script, to be run by our gcc plugin
Show the SSA form of each function, using GraphViz
import gcc
from gccutils import get_src_for_loc, cfg_to_dot, invoke_dot

A custom GCC pass, to be called directly after the builtin "ssa" pass, which
generates the Static Single Assignment form of the GIMPLE within the CFG:
class ShowSsa(gcc.GimplePass):
 def execute(self, fun):
 # (the SSA form of each function should have just been set up)
 if fun and fun.cfg:
 dot = cfg_to_dot(fun.cfg, fun.decl.name)
 # print(dot)
 invoke_dot(dot, name=fun.decl.name)

ps = ShowSsa(name='show-ssa')
ps.register_after('ssa')

show-callgraph.py

This simple script sends GCC’s interprocedural analysis data through GraphViz.

$./gcc-with-python examples/show-callgraph.py test.c

It generates an image file showing which functions call which other functions,
and opens it in a viewer.

[image: image of a call graph]

The Python code for this is:

Sample python script, to be run by our gcc plugin
Show the call graph (interprocedural analysis), using GraphViz
import gcc
from gccutils import callgraph_to_dot, invoke_dot

In theory we could have done this with a custom gcc.Pass registered
directly after "*build_cgraph_edges". However, we can only register
relative to passes of the same kind, and that pass is a
gcc.GimplePass, which is called per-function, and we want a one-time
pass instead.
#
So we instead register a callback on the one-time pass that follows it

def on_pass_execution(p, fn):
 if p.name == '*free_lang_data':
 # The '*free_lang_data' pass is called once, rather than per-function,
 # and occurs immediately after "*build_cgraph_edges", which is the
 # pass that initially builds the callgraph
 #
 # So at this point we're likely to get a good view of the callgraph
 # before further optimization passes manipulate it
 dot = callgraph_to_dot()
 invoke_dot(dot)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
 on_pass_execution)

Working with C code

“Hello world”

Here’s a simple “hello world” C program:

#include <stdio.h>

int main(int argc, char *argv[])
{
 printf("Hello, python\n");
}

Here’s a Python script that locates the function at one pass within the
compile and prints various interesting things about it:

import gcc

Here's a callback. We will wire it up below:
def on_pass_execution(p, fn):
 # This pass is called fairly early on, per-function, after the
 # CFG has been built:
 if p.name == '*warn_function_return':
 # For this pass, "fn" will be an instance of gcc.Function:
 print('fn: %r' % fn)
 print('fn.decl.name: %r' % fn.decl.name)

 # fn.decl is an instance of gcc.FunctionDecl:
 print('return type: %r' % str(fn.decl.type.type))
 print('argument types: %r' % [str(t) for t in fn.decl.type.argument_types])

 assert isinstance(fn.cfg, gcc.Cfg) # None for some early passes
 assert len(fn.cfg.basic_blocks) == 3
 assert fn.cfg.basic_blocks[0] == fn.cfg.entry
 assert fn.cfg.basic_blocks[1] == fn.cfg.exit
 bb = fn.cfg.basic_blocks[2]
 for i,stmt in enumerate(bb.gimple):
 print('gimple[%i]:' % i)
 print(' str(stmt): %r' % str(stmt))
 print(' repr(stmt): %r' % repr(stmt))
 if isinstance(stmt, gcc.GimpleCall):
 from gccutils import pprint
 print(' type(stmt.fn): %r' % type(stmt.fn))
 print(' str(stmt.fn): %r' % str(stmt.fn))
 for i, arg in enumerate(stmt.args):
 print(' str(stmt.args[%i]): %r' % (i, str(stmt.args[i])))
 print(' str(stmt.lhs): %s' % str(stmt.lhs))

Wire up our callback:
gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
 on_pass_execution)

We can run the script during the compile like this:

./gcc-with-python script.py test.c

Here’s the expected output:

fn: gcc.Function('main')
fn.decl.name: 'main'
return type: 'int'
argument types: ['int', 'char * *']
gimple[0]:
 str(stmt): '__builtin_puts (&"Hello, python"[0]);'
 repr(stmt): 'gcc.GimpleCall()'
 type(stmt.fn): <type 'gcc.AddrExpr'>
 str(stmt.fn): '__builtin_puts'
 str(stmt.args[0]): '&"Hello, python"[0]'
 str(stmt.lhs): None
gimple[1]:
 str(stmt): 'return;'
 repr(stmt): 'gcc.GimpleReturn()'

Notice how the call to printf has already been optimized into a call
to __builtin_puts.

Spell-checking string constants within source code

This example add a spell-checker pass to GCC: all string constants are run through the “enchant” spelling-checker:

$./gcc-with-python tests/examples/spelling-checker/script.py input.c

The Python code for this is:

import gcc

Use the Python bindings to the "enchant" spellchecker:
import enchant
spellingdict = enchant.Dict("en_US")

class SpellcheckingPass(gcc.GimplePass):
 def execute(self, fun):
 # This is called per-function during compilation:
 for bb in fun.cfg.basic_blocks:
 if bb.gimple:
 for stmt in bb.gimple:
 stmt.walk_tree(self.spellcheck_node, stmt.loc)

 def spellcheck_node(self, node, loc):
 # Spellcheck any textual constants found within the node:
 if isinstance(node, gcc.StringCst):
 words = node.constant.split()
 for word in words:
 if not spellingdict.check(word):
 # Warn about the spelling error (controlling the warning
 # with the -Wall command-line option):
 if gcc.warning(loc,
 'Possibly misspelt word in string constant: %r' % word,
 gcc.Option('-Wall')):
 # and, if the warning was not suppressed at the command line, emit
 # suggested respellings:
 suggestions = spellingdict.suggest(word)
 if suggestions:
 gcc.inform(loc, 'Suggested respellings: %r' % ', '.join(suggestions))

ps = SpellcheckingPass(name='spellchecker')
ps.register_after('cfg')

Given this sample C source file:

#include <stdio.h>

int main(int argc, char *argv[])
{
 const char *p = argc ? "correctly spelled" : "not so korectly speled";

 printf("The quick brown fox jumps over the lazy dog\n");

 printf("Ths s n xmple f spllng mstke\n");
}

these warnings are emitted on stderr:

tests/examples/spelling-checker/input.c: In function 'main':
tests/examples/spelling-checker/input.c:24:48: warning: Possibly misspelt word in string constant: 'korectly' [-Wall]
tests/examples/spelling-checker/input.c:24:48: note: Suggested respellings: 'correctly'
tests/examples/spelling-checker/input.c:24:48: warning: Possibly misspelt word in string constant: 'speled' [-Wall]
tests/examples/spelling-checker/input.c:24:48: note: Suggested respellings: 'speed, spieled, spelled, spewed, speckled, peeled, sped'
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt word in string constant: 'Ths' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings: "Th, Th's, Ohs, Thu, TVs, T's, Th s, Ts, This, Thus, The, Tho, Tbs, Thy, Goths"
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt word in string constant: 'xmple' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings: 'ample'
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt word in string constant: 'spllng' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings: 'spelling'
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt word in string constant: 'mstke' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings: 'mistake'

Finding global variables

This example adds a pass that warns about uses of global variables:

$./gcc-with-python \
 tests/examples/find-global-state/script.py \
 -c \
 tests/examples/find-global-state/input.c

The Python code for this is:

import gcc
from gccutils import get_src_for_loc

DEBUG=0

def is_const(type_):
 if DEBUG:
 type_.debug()

 if hasattr(type_, 'const'):
 if type_.const:
 return True

 # Don't bother warning about an array of const e.g.
 # const char []
 if isinstance(type_, gcc.ArrayType):
 item_type = type_.dereference
 if is_const(item_type):
 return True

class StateFinder:
 def __init__(self):
 # Locate all declarations of variables holding "global" state:
 self.global_decls = set()

 for var in gcc.get_variables():
 type_ = var.decl.type

 if DEBUG:
 print('var.decl: %r' % var.decl)
 print(type_)

 # Don't bother warning about const data:
 if is_const(type_):
 continue

 self.global_decls.add(var.decl)
 if DEBUG:
 print('self.global_decls: %r' % self.global_decls)

 self.state_users = set()

 def find_state_users(self, node, loc):
 if isinstance(node, gcc.VarDecl):
 if node in self.global_decls:
 # store the state users for later replay, so that
 # we can eliminate duplicates
 # e.g. two references to "q" in "q += p"
 # and replay in source-location order:
 self.state_users.add((loc, node))

 def flush(self):
 # Emit warnings, sorted by source location:
 for loc, node in sorted(self.state_users,
 key=lambda pair:pair[0]):
 gcc.inform(loc,
 'use of global state "%s %s" here'
 % (node.type, node))

def on_pass_execution(p, fn):
 if p.name == '*free_lang_data':
 sf = StateFinder()

 # Locate uses of such variables:
 for node in gcc.get_callgraph_nodes():
 fun = node.decl.function
 if fun:
 cfg = fun.cfg
 if cfg:
 for bb in cfg.basic_blocks:
 stmts = bb.gimple
 if stmts:
 for stmt in stmts:
 stmt.walk_tree(sf.find_state_users,
 stmt.loc)

 # Flush the data that was found:
 sf.flush()

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
 on_pass_execution)

Given this sample C source file:

#include <stdio.h>

static int a_global;

struct {
 int f;
} bar;

extern int foo;

int test(int j)
{
 /* A local variable, which should *not* be reported: */
 int i;
 i = j * 4;
 return i + 1;
}

int test2(int p)
{
 static int q = 0;
 q += p;
 return p * q;
}

int test3(int k)
{
 /* We should *not* report about __FUNCTION__ here: */
 printf("%s:%i:%s\n", __FILE__, __LINE__, __FUNCTION__);
}

int test4()
{
 return foo;
}

int test6()
{
 return bar.f;
}

struct banana {
 int f;
};

const struct banana a_banana;

int test7()
{
 return a_banana.f;
}

these warnings are emitted on stderr:

tests/examples/find-global-state/input.c:41:nn: note: use of global state "int q" here
tests/examples/find-global-state/input.c:41:nn: note: use of global state "int q" here
tests/examples/find-global-state/input.c:42:nn: note: use of global state "int q" here
tests/examples/find-global-state/input.c:53:nn: note: use of global state "int foo" here
tests/examples/find-global-state/input.c:58:nn: note: use of global state "struct
{
 int f;
} bar" here

Locations

	
gccutils.get_src_for_loc(loc)

	Given a gcc.Location, get the source line as a string
(without trailing whitespace or newlines)

	
class gcc.Location

	Wrapper around GCC’s location_t, representing a location within the source
code. Use gccutils.get_src_for_loc() to get at the line of actual
source code.

The output from __repr__ looks like this:

gcc.Location(file='./src/test.c', line=42)

The output from__str__ looks like this:

./src/test.c:42

	
file

	(string) Name of the source file (or header file)

	
line

	(int) Line number within source file (starting at 1, not 0)

	
column

	(int) Column number within source file (starting at 1, not 0)

	
in_system_header

	(bool) This attribute flags locations that are within a system header
file. It may be of use when writing custom warnings, so that you
can filter out issues in system headers, leaving just those within
the user’s code:

Don't report on issues found in system headers:
if decl.location.in_system_header:
 return

	
offset_column(self, offset)

	Generate a new gcc.Location based on the caret location
of this location, offsetting the column by the given amount.

From GCC 6 onwards, these values can represent both a caret and a range,
e.g.:

a = (foo && bar)
    ~~~~~^~~~~~~






	
__init__(self, caret, start, finish)

	Construct a location, using the caret location of caret as the
caret, and the start/finish of start and finish respectively:

compound_loc = gcc.Location(caret, start, finish)










	
caret

	(gcc.Location) The caret location within this location.
In the above example, the caret is on the first ‘&’ character.






	
start

	(gcc.Location) The start location of this range.
In the above example, the start is on the opening parenthesis.






	
finish

	(gcc.Location) The finish location of this range.
In the above example, the finish is on the closing parenthesis.










	
class gcc.RichLocation

	Wrapper around GCC’s rich_location, representing one or more locations
within the source code, and zero or more fix-it hints.


Note

gcc.RichLocation is only available from GCC 6 onwards




	
add_fixit_replace(self, new_content)

	Add a fix-it hint, suggesting replacement of the content covered
by range 0 of the rich location with new_content.













          

      

      

    

  

    
      
          
            
  
Generating custom errors and warnings


	
gcc.warning(location, message, option=None)

	Emits a compiler warning at the given gcc.Location, potentially
controlled by a gcc.Option.

If no option is supplied (or None is supplied), then the warning is an
unconditional one, always issued:

gcc.warning(func.start, 'this is an unconditional warning')





$ ./gcc-with-python script.py input.c
input.c:25:1: warning: this is an unconditional warning [enabled by default]





and will be an error if -Werror is supplied as a command-line argument to
GCC:

$ ./gcc-with-python script.py -Werror input.c
input.c:25:1: error: this is an unconditional warning [-Werror]





It’s possible to associate the warning with a command-line option, so that
it is controlled by that option.

For example, given this Python code:

gcc.warning(func.start, 'Incorrect formatting', gcc.Option('-Wformat'))





if the given warning is enabled, a warning will be printed to stderr:

$ ./gcc-with-python script.py input.c
input.c:25:1: warning: incorrect formatting [-Wformat]





If the given warning is being treated as an error (through the usage
of -Werror), then an error will be printed:

$ ./gcc-with-python script.py -Werror input.c
input.c:25:1: error: incorrect formatting [-Werror=format]
cc1: all warnings being treated as errors





$ ./gcc-with-python script.py -Werror=format input.c
input.c:25:1: error: incorrect formatting [-Werror=format]
cc1: some warnings being treated as errors





If the given warning is disabled, the warning will not be printed:

$ ./gcc-with-python script.py -Wno-format input.c






Note

Due to the way GCC implements some options, it’s not always
possible for the plugin to fully disable some warnings.  See
gcc.Option.is_enabled for more information.



The function returns a boolean, indicating whether or not anything was
actually printed.






	
gcc.error(location, message)

	Emits a compiler error at the given gcc.Location.

For example:

gcc.error(func.start, 'something bad was detected')





would lead to this error being printed to stderr:

$ ./gcc-with-python script.py input.c
input.c:25:1: error: something bad was detected










	
gcc.permerror(loc, str)

	This is a wrapper around GCC’s permerror function.

Expects an instance of gcc.Location (not None) and a string

Emit a “permissive” error at that location, intended for things that really
ought to be errors, but might be present in legacy code.

In theory it’s suppressable using “-fpermissive” at the GCC command line
(which turns it into a warning), but this only seems to be legal for C++
source files.

Returns True if the warning was actually printed, False otherwise






	
gcc.inform(location, message)

	This is a wrapper around GCC’s inform function.

Expects an instance of gcc.Location or
gcc.RichLocation, (not None) and a string

Emit an informational message at that location.

For example:

gcc.inform(stmt.loc, 'this is where X was defined')





would lead to this informational message being printed to stderr:

$ ./gcc-with-python script.py input.c
input.c:23:3: note: this is where X was defined













          

      

      

    

  

    
      
          
            
  
Working with functions and control flow graphs

Many of the plugin events are called for each function within the source code
being compiled.  Each time, the plugin passes a gcc.Function
instance as a parameter to your callback, so that you can work on it.

You can get at the control flow graph of a gcc.Function via its
cfg attribute.  This is an instance of gcc.Cfg.


	
class gcc.Function

	Wrapper around one of GCC’s struct function *


	
cfg

	An instance of gcc.Cfg for this function (or None during early
passes)






	
decl

	The declaration of this function, as a gcc.FunctionDecl






	
local_decls

	List of gcc.VarDecl for the function’s local variables.  It
does not contain arguments; for those see the arguments property of
the function’s decl.

Note that for locals with initializers, initial only seems to get set
on those local_decls that are static variables.  For other locals, it
appears that you have to go into the gimple representation to locate
assignments.






	
start

	The gcc.Location of the beginning of the function






	
end

	The gcc.Location of the end of the function






	
funcdef_no

	Integer: a sequence number for profiling, debugging, etc.










	
class gcc.Cfg

	A gcc.Cfg is a wrapper around GCC’s struct control_flow_graph.


	
basic_blocks

	List of gcc.BasicBlock, giving all of the basic blocks within
this CFG






	
entry

	Instance of gcc.BasicBlock: the entrypoint for this CFG






	
exit

	Instance of gcc.BasicBlock: the final one within this CFG






	
get_block_for_label(labeldecl)

	Given a gcc.LabelDecl, get the corresponding
gcc.BasicBlock





You can use gccutils.cfg_to_dot to render a gcc.Cfg as a graphviz
diagram.  It will render the diagram, showing each basic block, with
source code on the left-hand side, interleaved with the “gimple”
representation on the right-hand side.  Each block is labelled with its
index, and edges are labelled with appropriate flags.

For example, given this sample C code:


int
main(int argc, char **argv)
{
    int i;

    printf("argc: %i\n", argc);

    for (i = 0; i < argc; i++) {
        printf("argv[%i]: %s\n", argv[i]);
    }

    helper_function();

    return 0;
}









then the following Python code:

dot = gccutils.cfg_to_dot(fun.cfg)
gccutils.invoke_dot(dot)





will render a CFG bitmap like this:



[image: image of a control flow graph]










	
class gcc.BasicBlock

	A gcc.BasicBlock is a wrapper around GCC’s basic_block type.


	
index

	The index of the block (an int), as seen in the cfg_to_dot rendering.






	
preds

	The list of predecessor gcc.Edge instances leading into this
block






	
succs

	The list of successor gcc.Edge instances leading out of this
block






	
phi_nodes

	The list of gcc.GimplePhi phoney functions at the top of this
block, if appropriate for this pass, or None






	
gimple

	The list of gcc.Gimple instructions, if appropriate for this
pass, or None






	
rtl

	The list of gcc.Rtl expressions, if appropriate for this
pass, or None










	
class gcc.Edge

	A wrapper around GCC’s edge type.


	
src

	The source gcc.BasicBlock of this edge






	
dest

	The destination gcc.BasicBlock of this edge






	
true_value

	Boolean: True if this edge is taken when a gcc.GimpleCond
conditional is true, False otherwise






	
false_value

	Boolean: True if this edge is taken when a gcc.GimpleCond
conditional is false, False otherwise






	
complex

	Boolean: True if this edge is “special” e.g. due to
exception-handling, or some other kind of “strange” control flow transfer,
False otherwise













          

      

      

    

  

    
      
          
            
  
gcc.Tree and its subclasses

The various language front-ends for GCC emit “tree” structures (which I believe
are actually graphs), used throughout the rest of the internal representation of
the code passing through GCC.


	
class gcc.Tree

	A gcc.Tree is a wrapper around GCC’s tree type


	
debug()

	Dump the tree to stderr, using GCC’s own diagnostic routines






	
type

	Instance of gcc.Tree giving the type of the node






	
addr

	(long) The address of the underlying GCC object in memory





The __str__ method is implemented using GCC’s own pretty-printer for trees,
so e.g.:

str(t)





might return:

'int <T531> (int, char * *)'





for a gcc.FunctionDecl


	
str_no_uid

	A string representation of this object, like str(), but without
including any internal UIDs.

This is intended for use in selftests that compare output against some
expected value, to avoid embedding values that change into the expected
output.

For example, given the type declaration above, where str(t) might
return:

'int <T531> (int, char * *)'





where the UID “531” is liable to change from compile to compile, whereas
t.str_no_uid has value:

'int <Txxx> (int, char * *)'





which won’t arbitrarily change each time.









There are numerous subclasses of gcc.Tree, some with numerous
subclasses of their own.  Some important parts of the class hierarchy include:







	Subclass

	Meaning





	gcc.Binary

	A binary arithmetic expression, with
numerous subclasses



	gcc.Block

	A symbol-binding block



	gcc.Comparison

	A relational operators (with various
subclasses)



	gcc.Constant

	Subclasses for constants



	gcc.Constructor

	An aggregate value (e.g. in C, a
structure or array initializer)



	gcc.Declaration

	Subclasses relating to declarations
(variables, functions, etc)



	gcc.Expression

	Subclasses relating to expressions



	gcc.IdentifierNode

	A name



	gcc.Reference

	Subclasses for relating to reference to
storage (e.g. pointer values)



	gcc.SsaName

	A variable reference for SSA analysis



	gcc.Statement

	Subclasses for statement expressions,
which have side-effects



	gcc.Type

	Subclasses for describing the types of
variables



	gcc.Unary

	Subclasses for unary arithmetic
expressions







Note

Each subclass of gcc.Tree is typically named
after either one of the enum tree_code_class or enum tree_code values,
with the names converted to Camel Case:

For example a gcc.Binary is a wrapper around a tree of type
tcc_binary, and  a gcc.PlusExpr is a wrapper around a tree
of type PLUS_EXPR.

As of this writing, only a small subset of the various fields of the different
subclasses have been wrapped yet, but it’s generally easy to add new ones.  To
add new fields, I’ve found it easiest to look at gcc/tree.h and
gcc/print-tree.c within the GCC source tree and use the print_node function
to figure out what the valid fields are.  With that information, you should
then look at generate-tree-c.py, which is the code that generates the Python
wrapper classes (it’s used when building the plugin to create
autogenerated-tree.c).  Ideally when exposing a field to Python you should
also add it to the API documentation, and add a test case.




	
gccutils.pformat(tree)

	This function attempts to generate a debug dump of a gcc.Tree
and all of its “interesting” attributes, recursively.  It’s loosely modelled
on Python’s pprint module and GCC’s own debug_tree diagnostic routine
using indentation to try to show the structure.

It returns a string.

It differs from gcc.Tree.debug() in that it shows the Python
wrapper objects, rather than the underlying GCC data structures
themselves.  For example, it can’t show attributes that haven’t been
wrapped yet.

Objects that have already been reported within this call are abbreviated
to “…” to try to keep the output readable.

Example output:

<FunctionDecl
  repr() = gcc.FunctionDecl('main')
  superclasses = (<type 'gcc.Declaration'>, <type 'gcc.Tree'>)
  .function = gcc.Function('main')
  .location = /home/david/coding/gcc-python/test.c:15
  .name = 'main'
  .type = <FunctionType
            repr() = <gcc.FunctionType object at 0x2f62a60>
            str() = 'int <T531> (int, char * *)'
            superclasses = (<type 'gcc.Type'>, <type 'gcc.Tree'>)
            .name = None
            .type = <IntegerType
                      repr() = <gcc.IntegerType object at 0x2f629d0>
                      str() = 'int'
                      superclasses = (<type 'gcc.Type'>, <type 'gcc.Tree'>)
                      .const = False
                      .name = <TypeDecl
                                repr() = gcc.TypeDecl('int')
                                superclasses = (<type 'gcc.Declaration'>, <type 'gcc.Tree'>)
                                .location = None
                                .name = 'int'
                                .pointer = <PointerType
                                             repr() = <gcc.PointerType object at 0x2f62b80>
                                             str() = ' *'
                                             superclasses = (<type 'gcc.Type'>, <type 'gcc.Tree'>)
                                             .dereference = ... ("gcc.TypeDecl('int')")
                                             .name = None
                                             .type = ... ("gcc.TypeDecl('int')")
                                           >
                                .type = ... ('<gcc.IntegerType object at 0x2f629d0>')
                              >
                      .precision = 32
                      .restrict = False
                      .type = None
                      .unsigned = False
                      .volatile = False
                    >
          >
>










	
gccutils.pprint(tree)

	Similar to gccutils.pformat(), but prints the output to stdout.

(should this be stderr instead? probably should take a stream as an arg, but
what should the default be?)






Blocks


	
class gcc.Block

	A symbol binding block, such as the global symbols within a compilation unit.


	
vars

	The list of gcc.Tree for the declarations and labels in this
block












Declarations


	
class gcc.Declaration

	A subclass of gcc.Tree indicating a declaration

Corresponds to the tcc_declaration value of enum tree_code_class within
GCC’s own C sources.


	
name

	(string) the name of this declaration






	
location

	The gcc.Location for this declaration






	
is_artificial

	(bool) Is this declaration a compiler-generated entity, rather than
one provided by the user?

An example of such an “artificial” declaration occurs within the
arguments of C++ methods: the initial this argument is a
compiler-generated gcc.ParmDecl.






	
is_builtin

	(bool) Is this declaration a compiler-builtin?










	
class gcc.FieldDecl

	A subclass of gcc.Declaration indicating the declaration of a
field within a structure.


	
name

	(string) The name of this field










	
class gcc.FunctionDecl

	A subclass of gcc.Declaration indicating the declaration of a
function.   Internally, this wraps a (struct tree_function_decl *)


	
function

	The gcc.Function for this declaration






	
arguments

	List of gcc.ParmDecl representing the arguments of this
function






	
result

	The gcc.ResultDecl representing the return value of this
function






	
fullname

	
Note

This attribute is only usable with C++ code.  Attempting to use
it from another language will lead to a RuntimeError exception.



(string) The “full name” of this function, including the scope, return
type and default arguments.

For example, given this code:

namespace Example {
    struct Coord {
        int x;
        int y;
    };

    class Widget {
    public:
        void set_location(const struct Coord& coord);
    };
};





set_location’s fullname is:

'void Example::Widget::set_location(const Example::Coord&)'










	
callgraph_node

	The gcc.CallgraphNode for this function declaration, or
None






	
is_public

	(bool) For C++: is this declaration “public”






	
is_private

	(bool) For C++: is this declaration “private”






	
is_protected

	(bool) For C++: is this declaration “protected”






	
is_static

	(bool) For C++: is this declaration “static”










	
class gcc.ParmDecl

	A subclass of gcc.Declaration indicating the declaration of a
parameter to a function or method.






	
class gcc.ResultDecl

	A subclass of gcc.Declaration declararing a dummy variable that
will hold the return value from a function.






	
class gcc.VarDecl

	A subclass of gcc.Declaration indicating the declaration of a
variable (e.g. a global or a local).


	
initial

	The initial value for this variable as a gcc.Constructor,
or None






	
static

	(boolean) Is this variable to be allocated with static storage?










	
class gcc.NamespaceDecl

	
A subclass of gcc.Declaration representing a C++ namespace


	
alias_of

	The gcc.NamespaceDecl which this namespace is an alias of
or None if this namespace is not an alias.






	
declarations

	
Note

This attribute is only usable with non-alias namespaces.
Accessing it on an alias will lead to a RuntimeError exception.



List of gcc.Declaration objects in this namespace.
This attribute is only valid for non-aliases






	
namespaces

	
Note

This attribute is only usable with non-alias namespaces.
Accessing it on an alias will lead to a RuntimeError exception.



List of gcc.NamespaceDecl objects nested in this namespace.
This attribute is only valid for non-aliases






	
lookup(name)

	Locate the given name within the namespace, returning a
gcc.Tree or None






	
unalias()

	Always returns a gcc.NamespaceDecl object which is not an alias.
Returns self if this namespace is not an alias.















Types


	
class gcc.Type

	A subclass of gcc.Tree indicating a type

Corresponds to the tcc_type value of enum tree_code_class within
GCC’s own C sources.


	
name

	The gcc.IdentifierNode for the name of the type, or None.






	
pointer

	The gcc.PointerType representing the (this_type *) type






	
attributes

	The user-defined attributes on this type (using GCC’s __attribute
syntax), as a dictionary (mapping from attribute names to list of
values).  Typically this will be the empty dictionary.






	
sizeof

	sizeof() this type, as an int, or raising TypeError for those
types which don’t have a well-defined size


Note

This attribute is not usable from within lto1; attempting
to use it there will lead to a RuntimeError exception.











Additional attributes for various gcc.Type subclasses:



	
const

	(Boolean) Does this type have the const modifier?






	
const_equivalent

	The gcc.Type for the const version of this type






	
volatile

	(Boolean) Does this type have the volatile modifier?






	
volatile_equivalent

	The gcc.Type for the volatile version of this type






	
restrict

	(Boolean) Does this type have the restrict modifier?






	
restrict_equivalent

	The gcc.Type for the restrict version of this type






	
unqualified_equivalent

	The gcc.Type for the version of this type that does
not have any qualifiers.





The standard C types are accessible via class methods of gcc.Type.
They are only created by GCC after plugins are loaded, and so they’re
only visible during callbacks, not during the initial run of the code.
(yes, having them as class methods is slightly clumsy).

Each of the following returns a gcc.Type instance representing
the given type (or None at startup before any passes, when the types don’t
yet exist)








	Class method

	C Type





	gcc.Type.void()

	void



	gcc.Type.size_t()

	size_t



	gcc.Type.char()

	char



	gcc.Type.signed_char()

	signed char



	gcc.Type.unsigned_char()

	unsigned char



	gcc.Type.double()

	double



	gcc.Type.float()

	float



	gcc.Type.short()

	short



	gcc.Type.unsigned_short()

	unsigned short



	gcc.Type.int()

	int



	gcc.Type.unsigned_int()

	unsigned int



	gcc.Type.long()

	long



	gcc.Type.unsigned_long()

	unsigned long



	gcc.Type.long_double()

	long double



	gcc.Type.long_long()

	long long



	gcc.Type.unsigned_long_long()

	unsigned long long



	gcc.Type.int128()

	int128



	gcc.Type.unsigned_int128()

	unsigned int128



	gcc.Type.uint32()

	uint32



	gcc.Type.uint64()

	uint64













	
class gcc.IntegerType

	Subclass of gcc.Type, adding a few properties:


	
unsigned

	(Boolean) True for ‘unsigned’, False for ‘signed’






	
precision

	(int) The precision of this type in bits, as an int (e.g. 32)






	
signed_equivalent

	The gcc.IntegerType for the signed version of this type


Note

This attribute is not usable from within lto1; attempting
to use it there will lead to a RuntimeError exception.








	
unsigned_equivalent

	The gcc.IntegerType for the unsigned version of this type


Note

This attribute is not usable from within lto1; attempting
to use it there will lead to a RuntimeError exception.








	
max_value

	The maximum possible value for this type, as a
gcc.IntegerCst






	
min_value

	The minimum possible value for this type, as a
gcc.IntegerCst










	
class gcc.FloatType

	Subclass of gcc.Type representing C’s float and double types


	
precision

	(int) The precision of this type in bits (32 for float; 64 for
double)










	
class gcc.PointerType

	Subclass of gcc.Type representing a pointer type, such as
an int *


	
dereference

	The gcc.Type that this type points to.  In the above
example (int *), this would be the int type.










	
class gcc.EnumeralType

	Subclass of gcc.Type representing an enumeral type.


	
values

	A list of tuple representing the constants defined in this
enumeration.  Each tuple consists of two elements; the first
being the name of the constant, a gcc.IdentifierNode;
and the second being the value, a gcc.Constant.










	
class gcc.ArrayType

	Subclass of gcc.Type representing an array type.  For example,
in a C declaration such as:

char buf[16]





we have a gcc.VarDecl for buf, and its type is an instance of
gcc.ArrayType, representing char [16].


	
dereference

	The gcc.Type that this type points to.  In the above
example, this would be the char type.






	
range

	The gcc.Type that represents the range of the
array’s indices.  If the array has a known range, then this will
ordinarily be an gcc.IntegerType whose min_value
and max_value are the (inclusive) bounds of the array.  If the
array does not have a known range, then this attribute will be
None.

That is, in the example above, range.min_val is 0, and
range.max_val is 15.

But, for a C declaration like:

extern char array[];





the type’s range would be None.










	
class gcc.VectorType

	
	
dereference

	The gcc.Type that this type points to










	
class gcc.FunctionType

	Subclass of gcc.Type representing the type of a given function
(or or a typedef to a function type, e.g. for callbacks).

See also gcc.FunctionType

The type attribute holds the return type.


	
is_variadic

	True if this type represents a variadic function.  Note that for
a variadic function, the final … argument is not explicitly
represented in argument_types.






	
argument_types

	A tuple of gcc.Type instances, representing the function’s
argument types






	
gccutils.get_nonnull_arguments(funtype)

	This is a utility function for working with the “nonnull” custom
attribute on function types:

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

Return a frozenset of 0-based integers, giving the arguments for
which we can assume “nonnull-ness”, handling the various cases of:



	the attribute isn’t present (returning the empty frozenset)


	the attribute is present, without args (all pointer args are
non-NULL)


	the attribute is present, with a list of 1-based argument indices
(Note that the result is still 0-based)
















	
class gcc.MethodType

	Subclass of gcc.Type representing the type of a given method.
Similar to gcc.FunctionType

The type attribute holds the return type.


	
argument_types

	A tuple of gcc.Type instances, representing the function’s
argument types










	
class gcc.RecordType

	
A compound type, such as a C struct


	
fields

	The fields of this type, as a list of gcc.FieldDecl instances






	
methods

	The methods of this type, as a list of gcc.MethodType instances





You can look up C structures by looking within the top-level
gcc.Block within the current translation unit.  For example,
given this sample C code:


/* Example of a struct: */
struct test_struct {
    int a;
    char b;
    float c;
};

void foo()
{
}












then the following Python code:


import gcc

class TestPass(gcc.GimplePass):
    def execute(self, fn):
        print('fn: %r' % fn)
        for u in gcc.get_translation_units():
            for decl in u.block.vars:
                if isinstance(decl, gcc.TypeDecl):
                    # "decl" is a gcc.TypeDecl
                    # "decl.type" is a gcc.RecordType:
                    print('  type(decl): %s' % type(decl))
                    print('  type(decl.type): %s' % type(decl.type))
                    print('  decl.type.name: %r' % decl.type.name)
                    for f in decl.type.fields:
                        print('    type(f): %s' % type(f))
                        print('      f.name: %r' % f.name)
                        print('      f.type: %s' % f.type)
                        print('      type(f.type): %s' % type(f.type))

test_pass = TestPass(name='test-pass')








will generate this output:


fn: gcc.Function('foo')
  type(decl): <type 'gcc.TypeDecl'>
  type(decl.type): <type 'gcc.RecordType'>
  decl.type.name: gcc.IdentifierNode(name='test_struct')
    type(f): <type 'gcc.FieldDecl'>
      f.name: 'a'
      f.type: int
      type(f.type): <type 'gcc.IntegerType'>
    type(f): <type 'gcc.FieldDecl'>
      f.name: 'b'
      f.type: char
      type(f.type): <type 'gcc.IntegerType'>
    type(f): <type 'gcc.FieldDecl'>
      f.name: 'c'
      f.type: float
      type(f.type): <type 'gcc.RealType'>















Constants


	
class gcc.Constant

	Subclass of gcc.Tree indicating a constant value.

Corresponds to the tcc_constant value of enum tree_code_class within
GCC’s own C sources.


	
constant

	The actual value of this constant, as the appropriate Python type:







	Subclass

	Python type





	
	
class ComplexCst

	




	


	
	
class FixedCst

	




	


	
	
class IntegerCst

	




	int or long



	
	
class PtrmemCst

	




	


	
	
class RealCst

	




	float



	
	
class StringCst

	




	str



	
	
class VectorCst

	




	
















Binary Expressions


	
class gcc.Binary

	
Subclass of gcc.Tree indicating a binary expression.

Corresponds to the tcc_binary value of enum tree_code_class within
GCC’s own C sources.


	
location

	The gcc.Location for this binary expression






	
classmethod get_symbol()

	Get the symbol used in debug dumps for this gcc.Binary
subclass, if any, as a str.  A table showing these strings can be
seen here.





Has subclasses for the various kinds of binary expression.  These
include:

Simple arithmetic:









	Subclass

	C/C++ operators

	enum tree_code





	
	
class gcc.PlusExpr

	




	+

	PLUS_EXPR



	
	
class gcc.MinusExpr

	




	-

	MINUS_EXPR



	
	
class gcc.MultExpr

	




	*

	MULT_EXPR









Pointer addition:









	Subclass

	C/C++ operators

	enum tree_code





	
	
class gcc.PointerPlusExpr

	




	
	POINTER_PLUS_EXPR









Various division operations:








	Subclass

	C/C++ operators





	
	
class gcc.TruncDivExr

	




	


	
	
class gcc.CeilDivExpr

	




	


	
	
class gcc.FloorDivExpr

	




	


	
	
class gcc.RoundDivExpr

	




	








The remainder counterparts of the above division operators:








	Subclass

	C/C++ operators





	
	
class gcc.TruncModExpr

	




	


	
	
class gcc.CeilModExpr

	




	


	
	
class gcc.FloorModExpr

	




	


	
	
class gcc.RoundModExpr

	




	








Division for reals:








	Subclass

	C/C++ operators





	
	
class gcc.RdivExpr

	




	








Division that does not need rounding (e.g. for pointer subtraction in C):








	Subclass

	C/C++ operators





	
	
class gcc.ExactDivExpr

	




	








Max and min:









	Subclass

	C/C++ operators





	
	
class gcc.MaxExpr

	




	


	
	
class gcc.MinExpr

	




	








Shift and rotate operations:








	Subclass

	C/C++ operators





	
	
class gcc.LrotateExpr

	




	


	
	
class gcc.LshiftExpr

	




	<<, <<=



	
	
class gcc.RrotateExpr

	




	


	
	
class gcc.RshiftExpr

	




	>>, >>=












Bitwise binary expressions:








	Subclass

	C/C++ operators





	
	
class gcc.BitAndExpr

	




	&, &= (bitwise “and”)



	
	
class gcc.BitIorExpr

	




	|, |= (bitwise “or”)



	
	
class gcc.BitXorExpr

	




	^, ^= (bitwise “xor”)












Other gcc.Binary subclasses:








	Subclass

	Usage





	
	
class gcc.CompareExpr

	




	


	
	
class gcc.CompareGExpr

	




	


	
	
class gcc.CompareLExpr

	




	


	
	
class gcc.ComplexExpr

	




	


	
	
class gcc.MinusNomodExpr

	




	


	
	
class gcc.PlusNomodExpr

	




	


	
	
class gcc.RangeExpr

	




	


	
	
class gcc.UrshiftExpr

	




	


	
	
class gcc.VecExtractevenExpr

	




	


	
	
class gcc.VecExtractoddExpr

	




	


	
	
class gcc.VecInterleavehighExpr

	




	


	
	
class gcc.VecInterleavelowExpr

	




	


	
	
class gcc.VecLshiftExpr

	




	


	
	
class gcc.VecPackFixTruncExpr

	




	


	
	
class gcc.VecPackSatExpr

	




	


	
	
class gcc.VecPackTruncExpr

	




	


	
	
class gcc.VecRshiftExpr

	




	


	
	
class gcc.WidenMultExpr

	




	


	
	
class gcc.WidenMultHiExpr

	




	


	
	
class gcc.WidenMultLoExpr

	




	


	
	
class gcc.WidenSumExpr

	




	















Unary Expressions


	
class gcc.Unary

	Subclass of gcc.Tree indicating a unary expression (i.e. taking a
single argument).

Corresponds to the tcc_unary value of enum tree_code_class within
GCC’s own C sources.


	
operand

	The operand of this operator, as a gcc.Tree.






	
location

	The gcc.Location for this unary expression






	
classmethod get_symbol()

	Get the symbol used in debug dumps for this gcc.Unary
subclass, if any, as a str.  A table showing these strings can be
seen here.





Subclasses include:








	Subclass

	Meaning; C/C++ operators





	
	
class gcc.AbsExpr

	




	Absolute value



	
	
class gcc.AddrSpaceConvertExpr

	




	Conversion of pointers between address spaces



	
	
class gcc.BitNotExpr

	




	~ (bitwise “not”)



	
	
class gcc.CastExpr

	




	


	
	
class gcc.ConjExpr

	




	For complex types: complex conjugate



	
	
class gcc.ConstCastExpr

	




	


	
	
class gcc.ConvertExpr

	




	


	
	
class gcc.DynamicCastExpr

	




	


	
	
class gcc.FixTruncExpr

	




	Convert real to fixed-point, via truncation



	
	
class gcc.FixedConvertExpr

	




	


	
	
class gcc.FloatExpr

	




	Convert integer to real



	
	
class gcc.NegateExpr

	




	Unary negation



	
	
class gcc.NoexceptExpr

	




	


	
	
class gcc.NonLvalueExpr

	




	


	
	
class gcc.NopExpr

	




	


	
	
class gcc.ParenExpr

	




	


	
	
class gcc.ReducMaxExpr

	




	


	
	
class gcc.ReducMinExpr

	




	


	
	
class gcc.ReducPlusExpr

	




	


	
	
class gcc.ReinterpretCastExpr

	




	


	
	
class gcc.StaticCastExpr

	




	


	
	
class gcc.UnaryPlusExpr

	




	















Comparisons


	
class gcc.Comparison

	Subclass of gcc.Tree for comparison expressions

Corresponds to the tcc_comparison value of enum tree_code_class within
GCC’s own C sources.


	
location

	The gcc.Location for this comparison






	
classmethod get_symbol()

	Get the symbol used in debug dumps for this gcc.Comparison
subclass, if any, as a str.  A table showing these strings can be
seen here.





Subclasses include:








	Subclass

	C/C++ operators





	
	
class EqExpr

	




	==



	
	
class GeExpr

	




	>=



	
	
class GtExpr

	




	>



	
	
class LeExpr

	




	<=



	
	
class LtExpr

	




	<



	
	
class LtgtExpr

	




	


	
	
class NeExpr

	




	!=



	
	
class OrderedExpr

	




	


	
	
class UneqExpr

	




	


	
	
class UngeExpr

	




	


	
	
class UngtExpr

	




	


	
	
class UnleExpr

	




	


	
	
class UnltExpr

	




	


	
	
class UnorderedExpr

	




	















References to storage


	
class gcc.Reference

	Subclass of gcc.Tree for expressions involving a reference to
storage.

Corresponds to the tcc_reference value of enum tree_code_class within
GCC’s own C sources.


	
location

	The gcc.Location for this storage reference






	
classmethod get_symbol()

	Get the symbol used in debug dumps for this gcc.Reference
subclass, if any, as a str.  A table showing these strings can be
seen here.










	
class gcc.ArrayRef

	A subclass of gcc.Reference for expressions involving an array
reference:

unsigned char buffer[4096];
...
/* The left-hand side of this gcc.GimpleAssign is a gcc.ArrayRef: */
buffer[42] = 0xff;






	
array

	The gcc.Tree for the array within the reference
(gcc.VarDecl(‘buffer’) in the example above)






	
index

	The gcc.Tree for the index within the reference
(gcc.IntegerCst(42) in the example above)










	
class gcc.ComponentRef

	A subclass of gcc.Reference for expressions involving a field
lookup.

This can mean either a direct field lookup, as in:

struct mystruct s;
...
s.idx = 42;





or dereferenced field lookup:

struct mystruct *p;
...
p->idx = 42;






	
target

	The gcc.Tree for the container of the field (either s or
*p in the examples above)






	
field

	The gcc.FieldDecl for the field within the target.










	
class gcc.MemRef

	A subclass of gcc.Reference for expressions involving
dereferencing a pointer:

int p, *q;
...
p = *q;






	
operand

	The gcc.Tree for the expression describing the target of the
pointer









Other subclasses of gcc.Reference include:








	Subclass

	C/C++ operators





	
	
class ArrayRangeRef

	




	


	
	
class AttrAddrExpr

	




	


	
	
class BitFieldRef

	




	


	
	
class ImagpartExpr

	




	


	
	
class IndirectRef

	




	


	
	
class MemberRef

	




	


	
	
class OffsetRef

	




	


	
	
class RealpartExpr

	




	


	
	
class ScopeRef

	




	


	
	
class TargetMemRef

	




	


	
	
class UnconstrainedArrayRef

	




	


	
	
class ViewConvertExpr

	




	











Other expression subclasses


	
class gcc.Expression

	Subclass of gcc.Tree indicating an expression that doesn’t fit
into the other categories.

Corresponds to the tcc_expression value of enum tree_code_class within
GCC’s own C sources.


	
location

	The gcc.Location for this expression






	
classmethod get_symbol()

	Get the symbol used in debug dumps for this gcc.Expression
subclass, if any, as a str.  A table showing these strings can be
seen here.





Subclasses include:








	Subclass

	C/C++ operators





	
	
class gcc.AddrExpr

	




	


	
	
class gcc.AlignofExpr

	




	


	
	
class gcc.ArrowExpr

	




	


	
	
class gcc.AssertExpr

	




	


	
	
class gcc.AtEncodeExpr

	




	


	
	
class gcc.BindExpr

	




	


	
	
class gcc.CMaybeConstExpr

	




	


	
	
class gcc.ClassReferenceExpr

	




	


	
	
class gcc.CleanupPointExpr

	




	


	
	
class gcc.CompoundExpr

	




	


	
	
class gcc.CompoundLiteralExpr

	




	


	
	
class gcc.CondExpr

	




	


	
	
class gcc.CtorInitializer

	




	


	
	
class gcc.DlExpr

	




	


	
	
class gcc.DotProdExpr

	




	


	
	
class gcc.DotstarExpr

	




	


	
	
class gcc.EmptyClassExpr

	




	


	
	
class gcc.ExcessPrecisionExpr

	




	


	
	
class gcc.ExprPackExpansion

	




	


	
	
class gcc.ExprStmt

	




	


	
	
class gcc.FdescExpr

	




	


	
	
class gcc.FmaExpr

	




	


	
	
class gcc.InitExpr

	




	


	
	
class gcc.MessageSendExpr

	




	


	
	
class gcc.ModifyExpr

	




	


	
	
class gcc.ModopExpr

	




	


	
	
class gcc.MustNotThrowExpr

	




	


	
	
class gcc.NonDependentExpr

	




	


	
	
class gcc.NontypeArgumentPack

	




	


	
	
class gcc.NullExpr

	




	


	
	
class gcc.NwExpr

	




	


	
	
class gcc.ObjTypeRef

	




	


	
	
class gcc.OffsetofExpr

	




	


	
	
class gcc.PolynomialChrec

	




	


	
	
class gcc.PostdecrementExpr

	




	


	
	
class gcc.PostincrementExpr

	




	


	
	
class gcc.PredecrementExpr

	




	


	
	
class gcc.PredictExpr

	




	


	
	
class gcc.PreincrementExpr

	




	


	
	
class gcc.PropertyRef

	




	


	
	
class gcc.PseudoDtorExpr

	




	


	
	
class gcc.RealignLoad

	




	


	
	
class gcc.SaveExpr

	




	


	
	
class gcc.ScevKnown

	




	


	
	
class gcc.ScevNotKnown

	




	


	
	
class gcc.SizeofExpr

	




	


	
	
class gcc.StmtExpr

	




	


	
	
class gcc.TagDefn

	




	


	
	
class gcc.TargetExpr

	




	


	
	
class gcc.TemplateIdExpr

	




	


	
	
class gcc.ThrowExpr

	




	


	
	
class gcc.TruthAndExpr

	




	


	
	
class gcc.TruthAndifExpr

	




	


	
	
class gcc.TruthNotExpr

	




	


	
	
class gcc.TruthOrExpr

	




	


	
	
class gcc.TruthOrifExpr

	




	


	
	
class gcc.TruthXorExpr

	




	


	
	
class gcc.TypeExpr

	




	


	
	
class gcc.TypeidExpr

	




	


	
	
class gcc.VaArgExpr

	




	


	
	
class gcc.VecCondExpr

	




	


	
	
class gcc.VecDlExpr

	




	


	
	
class gcc.VecInitExpr

	




	


	
	
class gcc.VecNwExpr

	




	


	
	
class gcc.WidenMultMinusExpr

	




	


	
	
class gcc.WidenMultPlusExpr

	




	


	
	
class gcc.WithCleanupExpr

	




	


	
	
class gcc.WithSizeExpr

	




	












TODO




Statements


	
class gcc.Statement

	A subclass of gcc.Tree for statements

Corresponds to the tcc_statement value of enum tree_code_class within
GCC’s own C sources.






	
class gcc.CaseLabelExpr

	A subclass of gcc.Statement for the case and default labels
within a switch statement.


	
low

	
	for single-valued case labels, the value, as a gcc.Tree


	for range-valued case labels, the lower bound, as a gcc.Tree


	None for the default label









	
high

	For range-valued case labels, the upper bound, as a gcc.Tree.

None for single-valued case labels, and for the default label






	
target

	The target of the case label, as a gcc.LabelDecl












SSA Names


	
class gcc.SsaName

	
A subclass of gcc.Tree representing a variable references
during SSA analysis.  New SSA names are created every time a variable
is assigned a new value.


	
var

	The variable being referenced, as a gcc.VarDecl or
gcc.ParmDecl






	
def_stmt

	The gcc.Gimple statement which defines this SSA name






	
version

	An int value giving the version number of this SSA name


















          

      

      

    

  

    
      
          
            
  
Gimple statements


	
class gcc.Gimple

	A statement, in GCC’s Gimple representation.

The __str__ method is implemented using GCC’s own pretty-printer for gimple,
so e.g.:

str(stmt)





might return:

'D.3259 = (long unsigned int) i;'






	
loc

	Source code location of this statement, as a gcc.Location (or None)






	
block

	The lexical block holding this statement, as a gcc.Tree






	
exprtype

	The type of the main expression computed by this statement, as a
gcc.Tree (which might be gcc.VoidType)






	
str_no_uid

	A string representation of this statement, like str(), but without
including any internal UIDs.

This is intended for use in selftests that compare output against some
expected value, to avoid embedding values that change into the expected
output.

For example, given an assignment to a
temporary, the str(stmt) for the gcc.GimpleAssign might be:

'D.3259 = (long unsigned int) i;'





where the UID “3259” is liable to change from compile to compile, whereas
the stmt.str_no_uid has value:

'D.xxxx = (long unsigned int) i;'





which won’t arbitrarily change each time.






	
walk_tree(callback, *args, **kwargs)

	Visit all gcc.Tree nodes associated with this
statement, potentially more than once each.  This will visit both the
left-hand-side and right-hand-side operands of the statement (if any),
and recursively visit any of their child nodes.

For each node, the callback is invoked, supplying the node, and any
extra positional and keyword arguments passed to walk_tree:

callback(node, *args, **kwargs)





If the callback returns a true value, the traversal stops, and that
gcc.Tree is the result of the call to walk_tree.
Otherwise, the traversal continues, and walk_tree eventually returns
None.









gcc.Gimple has various subclasses, each corresponding to the
one of the kinds of statement within GCC’s internal representation.

The following subclasses have been wrapped for use from Python scripts:







	Subclass

	Meaning





	gcc.GimpleAsm

	One or more inline assembly
statements



	gcc.GimpleAssign

	An assignment of an expression to
an l-value:

LHS = RHS1 EXPRCODE RHS2;








	gcc.GimpleCall

	A function call:

[ LHS = ] FN(ARG1, ..., ARGN);








	gcc.GimpleCond

	A conditional jump, of the form:

if (LHS EXPRCODE RHS) goto TRUE_LABEL else goto FALSE_LABEL;








	gcc.GimpleLabel

	A label statement (jump target):

LABEL:








	gcc.GimpleNop

	The “do nothing” statement



	gcc.GimplePhi

	Used in the SSA passes:

LHS = PHI <ARG1, ..., ARGN>;








	gcc.GimpleReturn

	A “return” statement:

RETURN [RETVAL];








	gcc.GimpleSwitch

	A switch statement:

switch (INDEXVAR)
{
  case LAB1: ...; break;
  ...
  case LABN: ...; break;
  default: ...
}











There are some additional subclasses that have not yet been fully wrapped by
the Python plugin (email the gcc-python-plugin’s mailing list [https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/] if you’re
interested in working with these):







	Subclass

	Meaning





	gcc.GimpleBind

	A lexical scope



	gcc.GimpleCatch

	An exception handler



	gcc.GimpleDebug

	A debug statement



	gcc.GimpleEhDispatch

	Used in exception-handling



	gcc.GimpleEhFilter

	Used in exception-handling



	gcc.GimpleEhMustNotThrow

	Used in exception-handling



	gcc.GimpleErrorMark

	A dummy statement used for handling internal errors



	gcc.GimpleGoto

	An unconditional jump



	gcc.GimpleOmpAtomicLoad

	Used for implementing OpenMP



	gcc.GimpleOmpAtomicStore

	(ditto)



	gcc.GimpleOmpContinue

	(ditto)



	gcc.GimpleOmpCritical

	(ditto)



	gcc.GimpleOmpFor

	(ditto)



	gcc.GimpleOmpMaster

	(ditto)



	gcc.GimpleOmpOrdered

	(ditto)



	gcc.GimpleOmpParallel

	(ditto)



	gcc.GimpleOmpReturn

	(ditto)



	gcc.GimpleOmpSection

	(ditto)



	gcc.GimpleOmpSections

	(ditto)



	gcc.GimpleOmpSectionsSwitch

	(ditto)



	gcc.GimpleOmpSingle

	(ditto)



	gcc.GimpleOmpTask

	(ditto)



	gcc.GimplePredict

	A hint for branch prediction



	gcc.GimpleResx

	Resumes execution after an exception



	gcc.GimpleTry

	A try/catch or try/finally statement



	gcc.GimpleWithCleanupExpr

	Internally used when generating GIMPLE







	
class gcc.GimpleAsm

	Subclass of gcc.Gimple: a fragment of inline assembler code [http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html].


	
string

	The inline assembler code, as a str.










	
class gcc.GimpleAssign

	Subclass of gcc.Gimple: an assignment of an expression to an
l-value:

LHS = RHS1 EXPRCODE RHS2;






	
lhs

	Left-hand-side of the assignment, as a gcc.Tree






	
rhs

	The operands on the right-hand-side of the expression, as a list of
gcc.Tree instances (either of length 1 or length 2,
depending on the expression).






	
exprcode

	The kind of the expression, as an gcc.Tree subclass (the type
itself, not an instance)










	
class gcc.GimpleCall

	Subclass of gcc.Gimple: an invocation of a function, potentially
assigning the result to an l-value:

[ LHS = ] FN(ARG1, ..., ARGN);






	
lhs

	Left-hand-side of the assignment, as a gcc.Tree, or None






	
rhs

	The operands on the right-hand-side of the expression, as a list of
gcc.Tree instances






	
fn

	The function being called, as a gcc.Tree






	
fndecl

	The  declaration of the function being called (if any), as a
gcc.Tree






	
args

	The arguments for the call, as a list of gcc.Tree






	
noreturn

	(boolean) Has this call been marked as not returning?  (e.g. a call to
exit)










	
class gcc.GimpleReturn

	Subclass of gcc.Gimple: a “return” statement, signifying the end
of a gcc.BasicBlock:

RETURN [RETVAL];






	
retval

	



The return value, as a gcc.Tree, or None.






	
class gcc.GimpleCond

	Subclass of gcc.Gimple: a conditional jump, of the form:

if (LHS EXPRCODE RHS) goto TRUE_LABEL else goto FALSE_LABEL






	
lhs

	Left-hand-side of the comparison, as a gcc.Tree






	
exprcode

	The comparison predicate, as a gcc.Comparison subclass (the
type itself, not an instance).  For example, the gcc.GimpleCond statement
for this fragment of C code:

if (a == b)





would have stmt.exprcode == gcc.EqExpr






	
rhs

	The right-hand-side of the comparison, as a gcc.Tree






	
true_label

	The gcc.LabelDecl node used as the jump target for when the
comparison is true






	
false_label

	The gcc.LabelDecl node used as the jump target for when the
comparison is false





Note that a C conditional of the form:

if (some_int) {suiteA} else {suiteB}





is implicitly expanded to:

if (some_int != 0) {suiteA} else {suiteB}





and this becomes a gcc.GimpleCond with lhs as the integer, exprcode as
<type ‘gcc.NeExpr’>, and rhs as gcc.IntegerCst(0).






	
class gcc.GimplePhi

	Subclass of gcc.Gimple used in the SSA passes: a “PHI” or
“phoney” function, for merging the various possible values a variable can
have based on the edge that we entered this gcc.BasicBlock on:

LHS = PHI <ARG1, ..., ARGN>;






	
lhs

	Left-hand-side of the assignment, as a gcc.SsaName






	
args

	A list of (gcc.Tree, gcc.Edge) pairs representing
the possible (expr, edge) inputs.  Each expr is either a
gcc.SsaName or a gcc.Constant










	
class gcc.GimpleSwitch

	Subclass of gcc.Gimple: a switch statement, signifying the end of a
gcc.BasicBlock:

switch (INDEXVAR)
{
  case LAB1: ...; break;
  ...
  case LABN: ...; break;
  default: ...
}






	
indexvar

	The index variable used by the switch statement, as a gcc.Tree






	
labels

	The labels of the switch statement, as a list of gcc.CaseLabelExpr.

The initial label in the list is always the default.










	
class gcc.GimpleLabel

	Subclass of gcc.Gimple, representing a “label” statement:

.. py:attribute:: labels






The underlying gcc.LabelDecl node representing this jump
target









	
class gcc.GimpleAssign

	Subclass of gcc.Gimple: an assignment of an expression to an
l-value:

LHS = RHS1 EXPRCODE RHS2;






	
lhs

	Left-hand-side of the assignment, as a gcc.Tree






	
rhs

	The operands on the right-hand-side of the expression, as a list of
gcc.Tree instances (either of length 1 or length 2,
depending on the expression).






	
exprcode

	The kind of the expression, as an gcc.Tree subclass (the type
itself, not an instance)










	
class gcc.GimpleNop

	
Subclass of gcc.Gimple, representing a “do-nothing” statement
(a.k.a. “no operation”).












          

      

      

    

  

    
      
          
            
  
Optimization passes


Working with existing passes

GCC organizes the optimization work it does as “passes”, and these form trees:
passes can have both successors and child passes.

There are actually five “roots” to this tree:



	The gcc.Pass holding all “lowering” passes,
invoked per function within the callgraph, to turn high-level GIMPLE into
lower-level forms (this wraps all_lowering_passes within gcc/passes.c).


	The gcc.Pass holding all “small IPA” passes,
working on the whole callgraph (IPA is “Interprocedural Analysis”;
all_small_ipa_passes within gcc/passes.c)


	The gcc.Pass holding all regular IPA passes
(all_regular_ipa_passes within gcc/passes.c)


	The gcc.Pass holding those passes relating to link-time-optimization (all_lto_gen_passes within gcc/passes.c)


	The “all other passes” gcc.Pass catchall, holding the
majority of the passes.  These are called on each function within the call
graph (all_passes  within gcc/passes.c)








	
classmethod gcc.Pass.get_roots()

	Returns a 5-tuple of gcc.Pass instances, giving the 5 top-level
passes within GCC’s tree of passes, in the order described above.






	
classmethod gcc.Pass.get_by_name(name)

	Get the gcc.Pass instance for the pass with the given name,
raising ValueError if it isn’t found






	
class gcc.Pass

	This wraps one of GCC’s struct opt_pass * instances.

Beware:  “pass” is a reserved word in Python, so use e.g. ps as a variable
name for an instance of gcc.Pass


	
name

	The name of the pass, as a string






	
sub

	The first child pass of this pass (if any)






	
next

	The next sibling pass of this pass (if any)






	
properties_required

	




	
properties_provided

	




	
properties_destroyed

	Currently these are int bitfields, expressing the flow of data betweeen
the various passes.

They can be accessed using bitwise arithmetic:

if ps.properties_provided & gcc.PROP_cfg:
     print(fn.cfg)





Here are the bitfield flags:










	Mask

	Meaning

	Which pass sets this up?

	Which pass clears this?





	gcc.PROP_gimple_any

	Is the full GIMPLE grammar allowed?

	(the frontend)

	“expand”



	gcc.PROP_gimple_lcf

	Has control flow been lowered?

	“lower”

	“expand”



	gcc.PROP_gimple_leh

	Has exception-handling been lowered?

	“eh”

	“expand”



	gcc.PROP_cfg

	Does the gcc.Function have a non-None “cfg”?

	“cfg”

	“*free_cfg”



	gcc.PROP_referenced_vars

	Do we have data on which functions reference
which variables? (Dataflow analysis, aka
DFA).  This flag was removed in GCC 4.8

	“*referenced_vars”

	(none)



	gcc.PROP_ssa

	Is the GIMPLE in SSA form?

	“ssa”

	“expand”



	gcc.PROP_no_crit_edges

	Have all critical edges within the CFG been
split?

	“crited”

	(none)



	gcc.PROP_rtl

	Is the function now in RTL form? (rather
than GIMPLE-SSA)

	“expand”

	“*clean_state”



	gcc.PROP_gimple_lomp

	Have OpenMP directives been lowered into
explicit calls to the runtime library
(libgomp)

	“omplower”

	“expand”



	gcc.PROP_cfglayout

	Are we reorganizing the CFG into a more
efficient order?

	“into_cfglayout”

	“outof_cfglayout”



	gcc.PROP_gimple_lcx

	Have operations on complex numbers been
lowered to scalar operations?

	“cplxlower”

	“cplxlower0”














	
static_pass_number

	(int) The number of this pass, used as a fragment of the dump file name.
This is assigned automatically for custom passes.






	
dump_enabled

	(boolean) Is dumping enabled for this pass?  Set this attribute to True
to enable dumping.  Not available from GCC 4.8 onwards









There are four subclasses of gcc.Pass:


	
class gcc.GimplePass

	Subclass of gcc.Pass, signifying a pass called per-function on
the GIMPLE representation of that function.






	
class gcc.RtlPass

	Subclass of gcc.Pass, signifying a pass called per-function on
the RTL representation of that function.






	
class gcc.SimpleIpaPass

	Subclass of gcc.Pass, signifying a pass called once (not
per-function)






	
class gcc.IpaPass

	Subclass of gcc.Pass, signifying a pass called once (not
per-function)








Creating new optimization passes

You can create new optimization passes.  This involves three steps:



	subclassing the appropriate gcc.Pass subclass (e.g.
gcc.GimplePass)


	creating an instance of your subclass


	registering the instance within the pass tree, relative to another pass







Here’s an example:

# Here's the (trivial) implementation of our new pass:
class MyPass(gcc.GimplePass):
   # This is optional.
   # If present, it should return a bool, specifying whether or not
   # to execute this pass (and any child passes)
   def gate(self, fun):
       print('gate() called for %r' % fun)
       return True

   def execute(self, fun):
       print('execute() called for %r' % fun)

# We now create an instance of the class:
my_pass = MyPass(name='my-pass')

# ...and wire it up, after the "cfg" pass:
my_pass.register_after('cfg')





For gcc.GimplePass and gcc.RtlPass, the signatures of
gate and execute are:



	
gate(self, fun)

	




	
execute(self, fun)

	






where fun is a gcc.Function.

For gcc.SimpleIpaPass and gcc.IpaPass, the signature
of gate and execute are:



	
gate(self)

	




	
execute(self)

	







Warning

Unfortunately it doesn’t appear to be possible to implement gate() for
gcc.IpaPass yet; for now, the gate() method on such passes will not be
called.  See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54959



If an unhandled exception is raised within gate or execute, it will lead
to a GCC error:

/home/david/test.c:36:1: error: Unhandled Python exception raised calling 'execute' method
Traceback (most recent call last):
  File "script.py", line 79, in execute
   dot = gccutils.tree_to_dot(fun)
NameError: global name 'gccutils' is not defined






	
gcc.Pass.register_after(name[, instance_number=0])

	Given the name of another pass, register this gcc.Pass to occur
immediately after that other pass.

If the other pass occurs multiple times, the pass will be inserted at the
specified instance number, or at every instance, if supplied 0.


Note

The other pass must be of the same kind as this pass.  For example,
if it is a subclass of gcc.GimplePass, then this pass must
also be a subclass of gcc.GimplePass.

If they don’t match, GCC won’t be able to find the other pass, giving
an error like this:

cc1: fatal error: pass 'ssa' not found but is referenced by new pass 'my-ipa-pass'





where we attempted to register a gcc.IpaPass subclass
relative to ‘ssa’, which is a gcc.GimplePass








	
gcc.Pass.register_before(name[, instance_number=0])

	As above, but this pass is registered immediately before the referenced
pass.






	
gcc.Pass.replace(name[, instance_number=0])

	As above, but replace the given pass.  This method is included for
completeness; the result is unlikely to work well.








Dumping per-pass information

GCC has a logging framework which supports per-pass logging (“dump files”).

By default, no logging is done; dumping must be explicitly enabled.

Dumping of passes can be enabled from the command-line in groups:



	-fdump-tree-all enables dumping for all gcc.GimplePass
(both builtin, and custom ones from plugins)


	-fdump-rtl-all is similar, but for all gcc.RtlPass


	-fdump-ipa-all as above, but for all gcc.IpaPass and
gcc.SimpleIpaPass







For more information, see
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

It’s not possible to directly enable dumping for a custom pass from the
command-line (it would require adding new GCC command-line options).  However,
your script can directly enable dumping for a custom pass by writing to the
dump_enabled attribute (perhaps in response to the arguments passed to
plugin, or a driver script).

If enabled for a pass, then a file is written to the same directory as the
output file, with a name based on the input file and the pass number.

For example, given a custom gcc.Pass with name ‘test-pass’, then
when input.c is compiled to build/output.o:

$ gcc -fdump-tree-all -o build/output.o src/input.c





then a dump file input.c.225t.test-pass will be written to the directory
build.  In this case, 225 is the static_pass_number field, “t”
signifies a tree pass, with the pass name appearing as the suffix.


	
gcc.dump(obj)

	Write str() of the argument to the current dump file.  No newlines or other
whitespace are added.

Note that dumping is disabled by default; in this case, the call will do
nothing.






	
gcc.get_dump_file_name()

	Get the name of the current dump file.

If called from within a pass for which dumping is enabled, it will return
the filename in string form.

If dumping is disabled for this pass, it will return None.





The typical output of a dump file will contain:

;; Function bar (bar)

(dumped information when handling function bar goes here)

;; Function foo (foo)

(dumped information when handling function foo goes here)





For example:

class TestPass(gcc.GimplePass):
    def execute(self, fun):
        # Dumping of strings:
        gcc.dump('hello world')

        # Dumping of other objects:
        gcc.dump(42)

ps = TestPass(name='test-pass')
ps.register_after('cfg')
ps.dump_enabled = True





would have a dump file like this:

;; Function bar (bar)

hello world42
;; Function foo (foo)

hello world42





Alternatively, it can be simpler to create your own logging system, given that
one can simply open a file and write to it.


	
gcc.get_dump_base_name()

	Get the base file path and name prefix for GCC’s dump files.

You can use this when creating non-standard logfiles and other output.

For example, the libcpychecker code can write HTML reports on
reference-counting errors within a function, writing the output to a file
named:

filename = '%s.%s-refcount-errors.html' % (gcc.get_dump_base_name(),
                                           fun.decl.name)





given fun, a gcc.Function.

By default, this is the name of the input file, but within the output
file’s directory.  (It can be overridden using the -dumpbase command-line
option).











          

      

      

    

  

    
      
          
            
  
Working with callbacks

One way to work with GCC from the Python plugin is via callbacks. It’s possible
to register callback functions, which will be called when various events happen
during compilation.

For example, it’s possible to piggyback off of an existing GCC pass by using
gcc.PLUGIN_PASS_EXECUTION to piggyback off of an existing GCC pass.


	
gcc.register_callback(event_id, function, [extraargs, ]**kwargs)

	Wire up a python function as a callback.  It will be called when the given
event occurs during compilation.  For some events, the callback will be
called just once; for other events, the callback is called once per
function within the source code being compiled.  In the latter case, the
plugin passes a gcc.Function instance as a parameter to your
callback, so that you can work on it:

import gcc

def my_pass_execution_callback(*args, **kwargs):
     print('my_pass_execution_callback was called: args=%r  kwargs=%r'
           % (args, kwargs))

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
                      my_pass_execution_callback)





The exact arguments passed to your callback vary: consult the documentation
for the particular event you are wiring up to (see below).

You can pass additional arguments when registering the callback - they will
be passed to the callback after any normal arguments.  This is denoted in the
descriptions of events below by *extraargs.

You can also supply keyword arguments: they will be passed on as keyword
arguments to the callback.  This is denoted in the description of events
below by **kwargs.





The various events are exposed as constants within the gcc module and
directly wrap GCC’s plugin mechanism.

The following GCC events are currently usable from the Python plugin via
gcc.register_callback():







	ID

	Meaning





	gcc.PLUGIN_ATTRIBUTES

	For creating custom GCC attributes



	gcc.PLUGIN_PRE_GENERICIZE

	For working with the AST in the C and C++ frontends



	gcc.PLUGIN_PASS_EXECUTION

	Called before each pass is executed



	gcc.PLUGIN_FINISH_UNIT

	At the end of working with a translation unit (aka source file)



	gcc.PLUGIN_FINISH_TYPE

	After a type has been parsed



	gcc.PLUGIN_FINISH_DECL

	After a declaration has been parsed (GCC 4.7 or later)



	gcc.PLUGIN_FINISH

	Called before GCC exits







	
gcc.PLUGIN_ATTRIBUTES

	Called when GCC is creating attributes for use with its non-standard
__attribute__(()) syntax [http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html].

If you want to create custom GCC attributes, you should register a callback
on this event and call gcc.register_attribute() from within that
callback, so that they are created at the same time as the GCC’s built-in
attributes.

No arguments are passed to your callback other than those that you supply
yourself when registering it:


(*extraargs, **kwargs)




See creating custom GCC attributes for examples and
more information.






	
gcc.PLUGIN_PASS_EXECUTION

	Called when GCC is about to run one of its passes.

Arguments passed to the callback are:


(ps, fun, *extraargs, **kwargs)




where ps is a gcc.Pass and fun is a gcc.Function.
Your callback will typically be called many times: there are many passes,
and each can be invoked zero or more times per function (in the code being
compiled)

More precisely, some passes have a “gate check”: the pass first checks a
condition, and only executes if the condition is true.

Any callback registered with gcc.PLUGIN_PASS_EXECUTION will get called
if this condition succeeds.

The actual work of the pass is done after the callbacks return.

In pseudocode:

if pass.has_gate_condition:
    if !pass.test_gate_condition():
       return
invoke_all_callbacks()
actually_do_the_pass()





For passes working on individual functions, all of the above is done
per-function.

To connect to a specific pass, you can simply add a conditional based on the
name of the pass:

import gcc

def my_callback(ps, fun):
    if ps.name != '*warn_function_return':
        # Not the pass we want
        return
    # Do something here
    print(fun.decl.name)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
                      my_callback)










	
gcc.PLUGIN_PRE_GENERICIZE

	Arguments passed to the callback are:


(fndecl, *extraargs, **kwargs)




where fndecl is a gcc.Tree representing a function declaration
within the source code being compiled.






	
gcc.PLUGIN_FINISH_UNIT

	Called when GCC has finished compiling a particular translation unit.

Arguments passed to the callback are:


(*extraargs, **kwargs)









	
gcc.PLUGIN_FINISH_DECL

	
Note

Only available in GCC 4.7 onwards.



Called when GCC has finished compiling a declaration (variables,
functions, parameters to functions, types, etc)

Arguments passed to the callback are:


(decl, *extraargs, **kwargs)




where decl is a gcc.Declaration.






	
gcc.PLUGIN_FINISH_TYPE

	Called when GCC has finished parsing a type.  Arguments to the
callback are:


(type, *extraargs, **kwargs)




where type is a gcc.Type.






	
gcc.PLUGIN_FINISH

	Called before GCC exits.

Arguments passed to the callback are:


(*extraargs, **kwargs)








The remaining GCC events aren’t yet usable from the plugin; an attempt to
register a callback on them will lead to an exception being raised. Email
the gcc-python-plugin’s mailing list [https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/] if you’re
interested in working with these):







	ID

	Meaning





	gcc.PLUGIN_PASS_MANAGER_SETUP

	To hook into pass manager



	gcc.PLUGIN_INFO

	Information about the plugin



	gcc.PLUGIN_GGC_START

	For interacting with GCC’s garbage collector



	gcc.PLUGIN_GGC_MARKING

	(ditto)



	gcc.PLUGIN_GGC_END

	(ditto)



	gcc.PLUGIN_REGISTER_GGC_ROOTS

	(ditto)



	gcc.PLUGIN_REGISTER_GGC_CACHES

	(ditto)



	gcc.PLUGIN_START_UNIT

	Called before processing a translation unit (aka source file)



	gcc.PLUGIN_PRAGMAS

	For registering pragmas



	gcc.PLUGIN_ALL_PASSES_START

	Called before the first pass of the “all other passes” gcc.Pass catchall



	gcc.PLUGIN_ALL_PASSES_END

	Called after last pass of the “all other passes” gcc.Pass catchall



	gcc.PLUGIN_ALL_IPA_PASSES_START

	Called before the first IPA pass



	gcc.PLUGIN_ALL_IPA_PASSES_END

	Called after last IPA pass



	gcc.PLUGIN_OVERRIDE_GATE

	Provides a way to disable a built-in pass



	gcc.PLUGIN_EARLY_GIMPLE_PASSES_START

	


	gcc.PLUGIN_EARLY_GIMPLE_PASSES_END

	


	gcc.PLUGIN_NEW_PASS

	









          

      

      

    

  

    
      
          
            
  
Creating custom GCC attributes

GNU C supports a non-standard __attribute__(()) syntax [http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html] for marking
declarations with additional information that may be of interest to the
optimizer, and for checking the correctness of the code.

The GCC Python plugin allows you to create custom attributes, which may
be of use to your scripts: you can use this to annotate C code with additional
information.  For example, you could create a custom attribute for functions
describing the interaction of a function on mutex objects:

extern void some_function(void)
  __attribute__((claims_mutex("io")));

extern void some_other_function(void)
  __attribute__((releases_mutex("io")));





and use this in a custom code-checker.

Custom attributes can take string and integer parameters.  For example, the
above custom attributes take a single string parameter.  A custom attribute can
take more than one parameter, or none at all.

To create custom attributes from Python, you need to wire up a callback
response to the gcc.PLUGIN_ATTRIBUTES event:


gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,
                      register_our_attributes)








This callback should then call gcc.register_attribute() to associate
the name of the attribute with a Python callback to be called when the
attribute is encountered in C code.


	
gcc.register_attribute(name, min_length, max_length, decl_required, type_required, function_type_required, callable)

	Registers a new GCC attribute with the given name , usable in C source
code via __attribute__(()).


	Parameters

	
	name (str) – the name of the new attribute


	min_length (int) – the minimum number of arguments expected when the attribute is used


	max_length (int) – the maximum number of arguments expected when the
attribute is used (-1 for no maximum)


	decl_required – 


	type_required – 


	function_type_required – 


	callable (a callable object, such as a function) – the callback to be invoked when the attribute is seen












In this example, we can simply print when the attribute is seen, to verify that
the callback mechanism is working:


def attribute_callback_for_claims_mutex(*args):
    print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
    print('attribute_callback_for_releases_mutex called: args: %s' % (args, ))

def register_our_attributes():
    gcc.register_attribute('claims_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_claims_mutex)
    gcc.register_attribute('releases_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_releases_mutex)








Putting it all together, here is an example Python script for the plugin:


import gcc

# Verify that we can register custom attributes:

def attribute_callback_for_claims_mutex(*args):
    print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
    print('attribute_callback_for_releases_mutex called: args: %s' % (args, ))

def register_our_attributes():
    gcc.register_attribute('claims_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_claims_mutex)
    gcc.register_attribute('releases_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_releases_mutex)

# Wire up our callback:
gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,
                      register_our_attributes)









Compiling this test C source file:


/* Function declarations with custom attributes: */
extern some_function(void) __attribute__((claims_mutex("io")));

extern some_other_function(void) __attribute__((releases_mutex("io")));

extern yet_another_function(void) __attribute__((claims_mutex("db"),
                                                 claims_mutex("io"),
                                                 releases_mutex("io")));








leads to this output from the script:


attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('some_function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('some_other_function'), gcc.StringCst('io'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_another_function'), gcc.StringCst('db'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_another_function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('yet_another_function'), gcc.StringCst('io'))









Using the preprocessor to guard attribute usage

Unfortunately, the above C code will only work when it is compiled with the
Python script that adds the custom attributes.

You can avoid this by using gcc.define_macro() to pre-define a
preprocessor name (e.g. “WITH_ATTRIBUTE_CLAIMS_MUTEX”) at the same time as when
you define the attribute:


import gcc

def attribute_callback_for_claims_mutex(*args):
    print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
    print('attribute_callback_for_releases_mutex called: args: %s' % (args, ))

def register_our_attributes():
    gcc.register_attribute('claims_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_claims_mutex)
    gcc.define_macro('WITH_ATTRIBUTE_CLAIMS_MUTEX')

    gcc.register_attribute('releases_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_releases_mutex)
    gcc.define_macro('WITH_ATTRIBUTE_RELEASES_MUTEX')

# Wire up our callback:
gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,
                      register_our_attributes)









This way the user can write this C code instead, and have it work both with
and without the Python script:


#if defined(WITH_ATTRIBUTE_CLAIMS_MUTEX)
 #define CLAIMS_MUTEX(x) __attribute__((claims_mutex(x)))
#else
 #define CLAIMS_MUTEX(x)
#endif

#if defined(WITH_ATTRIBUTE_RELEASES_MUTEX)
 #define RELEASES_MUTEX(x) __attribute__((releases_mutex(x)))
#else
 #define RELEASES_MUTEX(x)
#endif


/* Function declarations with custom attributes: */
extern void some_function(void)
    CLAIMS_MUTEX("io");

extern void some_other_function(void)
    RELEASES_MUTEX("io");

extern void yet_another_function(void)
    CLAIMS_MUTEX("db")
    CLAIMS_MUTEX("io")
    RELEASES_MUTEX("io");








giving this output from the script:


attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('some_function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('some_other_function'), gcc.StringCst('io'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_another_function'), gcc.StringCst('db'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_another_function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('yet_another_function'), gcc.StringCst('io'))














          

      

      

    

  

    
      
          
            
  
Usage example: a static analysis tool for CPython extension code


Note

This code is under heavy development, and still contains bugs.  It
is not unusual to see Python tracebacks when running the checker.  You
should verify what the checker reports before acting on it: it could be
wrong.



An example of using the plugin is a static analysis tool I’m working on which
checks the C source of CPython extension modules for common coding errors.

This was one of my main motivations for writing the GCC plugin, and I often
need to extend the plugin to support this use case.

For this reason, the checker is embedded within the gcc-python source tree
itself for now:



	gcc-with-cpychecker is a harness script, which invokes GCC, adding
the arguments necessary to use the Python plugin, using the
libcpychecker Python code


	the libcpychecker subdirectory contains the code that does the actual
work


	various test cases (in the source tree, below tests/cpychecker)








gcc-with-cpychecker

gcc-with-cpychecker is a harness script, which invokes GCC, adding
the arguments necessary to use the Python plugin, using the
libcpychecker Python code

You should be able to use the checker on arbitrary CPython extension
code by replacing “gcc” with “gcc-with-cpychecker” in your build with
something like:

make CC=/path/to/built/plugin/gcc-with-cpychecker





to override the Makefile variable CC.

You may need to supply an absolute path, especially if the “make” recursively
invokes “make” within subdirectories (thus having a different working
directory).

Similarly, for projects that use distutils [http://docs.python.org/library/distutils.html], the code is typically built
with an invocation like this:

python setup.py build





This respects the environment variable CC, so typically you can replace the
above with something like this in order to add the additional checks:

CC=/path/to/built/plugin/gcc-with-cpychecker python setup.py build






Additional arguments for gcc-with-cpychecker


	
--maxtrans <int>

	Set the maximum number of transitions to consider within each function
before pruning the analysis tree.  You may need to increase this limit
for complicated functions.






	
--dump-json

	Dump a JSON representation of any problems.  For example, given a function
foo.c, if any warnings or errors are found in function bar, a file
foo.c.bar.json will be written out in JSON form.










Reference-count checking

The checker attempts to analyze all possible paths through each function,
tracking the various PyObject* objects encountered.

For each path through the function and PyObject*, it determines what the
reference count ought to be at the end of the function, issuing warnings for
any that are incorrect.

The warnings are in two forms: the classic textual output to GCC’s standard
error stream, together with an HTML report indicating the flow through the
function, in graphical form.

For example, given this buggy C code:

PyObject *
test(PyObject *self, PyObject *args)
{
    PyObject *list;
    PyObject *item;
    list = PyList_New(1);
    if (!list)
        return NULL;
    item = PyLong_FromLong(42);
    /* This error handling is incorrect: it's missing an
       invocation of Py_DECREF(list): */
    if (!item)
        return NULL;
    /* This steals a reference to item; item is not leaked when we get here: */
    PyList_SetItem(list, 0, item);
    return list;
}





the checker emits these messages to stderr:

input.c: In function 'test':
input.c:38:1: warning: ob_refcnt of '*list' is 1 too high [enabled by default]
input.c:38:1: note: was expecting final ob_refcnt to be N + 0 (for some unknown N)
input.c:38:1: note: but final ob_refcnt is N + 1
input.c:27:10: note: PyListObject allocated at:     list = PyList_New(1);
input.c:27:10: note: when PyList_New() succeeds at:     list = PyList_New(1);
input.c:27:10: note: ob_refcnt is now refs: 1 + N where N >= 0
input.c:28:8: note: taking False path at:     if (!list)
input.c:30:10: note: reaching:     item = PyLong_FromLong(42);
input.c:30:10: note: when PyLong_FromLong() fails at:     item = PyLong_FromLong(42);
input.c:33:8: note: taking True path at:     if (!item)
input.c:34:9: note: reaching:         return NULL;
input.c:38:1: note: returning
input.c:24:1: note: graphical error report for function 'test' written out to 'input.c.test-refcount-errors.html'





along with this HTML report (as referred to by the final line on stderr):



[image: screenshot of the HTML report]





The HTML report is intended to be relatively self-contained, and thus easy to
attach to bug tracking systems (it embeds its own CSS inline, and references
the JavaScript it uses via URLs to the web).


Note

The arrow graphics in the HTML form of the report are added by using
the JSPlumb JavaScript library to generate HTML 5 <canvas> elements.  You
may need a relatively modern browser to see them.




Note

The checker tracks reference counts in an abstract way, in two parts:
a part of the reference count that it knows about within the context of the
function, along with a second part: all of the other references held by the
rest of the program.

For example, in a call to PyInt_FromLong(0), it is assumed that if the call
succeeds, the object has a reference count of 1 + N, where N is some unknown
amount of other references held by the rest of the program.   The checker
knows that N >= 0.

If the object is then stored in an opaque container which is known to
increment the reference count, the checker can say that the reference count
is then 1 + (N+1).

If the function then decrements the reference count (to finish transferring
the reference to the opaque container), the checker now treats the object as
having a reference count of 0 + (N+1): it no longer owns any references on
the object, but the reference count is actually unchanged relative to the
original 1 + N amount.  It also knows, given that N >= 0 that the actual
reference count is >= 1, and thus the object won’t (yet) be deallocated.




Assumptions and configuration

For any function returning a PyObject*, it assumes that the PyObject*
should be either a new reference to an object, or NULL (with an exception set)
- the function’s caller should “own” a reference to that object.  For all
other PyObject*, it assumes that there should be no references owned by the
function when the function terminates.

It will assume this behavior for any function (or call through a function
pointer) that returns a PyObject*.

It is possible to override this behavior using custom compiler attributes as
follows:


Marking functions that return borrowed references

The checker provides a custom GCC attribute:

__attribute__((cpychecker_returns_borrowed_ref))





which can be used to mark function declarations:

/* The checker automatically defines this preprocessor name when creating
   the custom attribute: */
#if defined(WITH_CPYCHECKER_RETURNS_BORROWED_REF_ATTRIBUTE)
  #define CPYCHECKER_RETURNS_BORROWED_REF \
    __attribute__((cpychecker_returns_borrowed_ref))
#else
  #define CPYCHECKER_RETURNS_BORROWED_REF
#endif

PyObject *foo(void)
  CPYCHECKER_RETURNS_BORROWED_REF;





Given the above, the checker will assume that invocations of foo() are
returning a borrowed reference (or NULL), rather than a new reference.  It
will also check that this is that case when verifying the implementation of
foo() itself.




Marking functions that steal references to their arguments

The checker provides a custom GCC attribute:

__attribute__((cpychecker_steals_reference_to_arg(n)))





which can be used to mark function declarations:

/* The checker automatically defines this preprocessor name when creating
   the custom attribute: */
#if defined(WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE)
  #define CPYCHECKER_STEALS_REFERENCE_TO_ARG(n) \
   __attribute__((cpychecker_steals_reference_to_arg(n)))
#else
 #define CPYCHECKER_STEALS_REFERENCE_TO_ARG(n)
#endif

extern void foo(PyObject *obj)
  CPYCHECKER_STEALS_REFERENCE_TO_ARG(1);





Given the above, the checker will assume that invocations of foo() steal
a reference to the first argument (obj).  It will also verify that this is
the case when analyzing the implementation of foo() itself.

More then one argument can be marked:

extern void bar(int i, PyObject *obj, int j, PyObject *other)
  CPYCHECKER_STEALS_REFERENCE_TO_ARG(2)
  CPYCHECKER_STEALS_REFERENCE_TO_ARG(4);





The argument indices are 1-based (the above example is thus referring to
obj and to other).

All such arguments to the attribute should be PyObject* (or a pointer to a
derived structure type).

It is assumed that such references are stolen for all possible outcomes of the
function - if a function can either succeed or fail, the reference is stolen in
both possible worlds.








Error-handling checking

The checker has knowledge of much of the CPython C API, and will generate
a trace tree containing many of the possible error paths.   It will issue
warnings for code that appears to not gracefully handle an error.

(TODO: show example)

As noted above, it assumes that any function that returns a PyObject* can
return can either NULL (setting an exception), or a new reference.  It knows
about much of the other parts of the CPython C API, including many other
functions that can fail.

The checker will emit warnings for various events:



	if it detects a dereferencing of a NULL value


	if a NULL value is erroneously passed to various CPython API
entrypoints which are known to implicitly dereference those arguments
(which would lead to a segmentation fault if that code path were executed):

input.c: In function 'test':
input.c:38:33: warning: calling PyString_AsString with NULL (gcc.VarDecl('repr_args')) as argument 1 at input.c:38
input.c:31:15: note: when PyObject_Repr() fails at:     repr_args = PyObject_Repr(args);
input.c:38:33: note: PyString_AsString() invokes Py_TYPE() on the pointer via the PyString_Check() macro, thus accessing (NULL)->ob_type
input.c:27:1: note: graphical error report for function 'test' written out to 'input.c.test-refcount-errors.html'







	if it detects that an uninitialized local variable has been used


	if it detects access to an object that has been deallocated, or such an
object being returned:

input.c: In function 'test':
input.c:43:1: warning: returning pointer to deallocated memory
input.c:29:15: note: when PyLong_FromLong() succeeds at:     PyObject *tmp = PyLong_FromLong(0x1000);
input.c:31:8: note: taking False path at:     if (!tmp) {
input.c:39:5: note: reaching:     Py_DECREF(tmp);
input.c:39:5: note: when taking False path at:     Py_DECREF(tmp);
input.c:39:5: note: reaching:     Py_DECREF(tmp);
input.c:39:5: note: calling tp_dealloc on PyLongObject allocated at input.c:29 at:     Py_DECREF(tmp);
input.c:42:5: note: reaching:     return tmp;
input.c:43:1: note: returning
input.c:39:5: note: memory deallocated here
input.c:27:1: note: graphical error report for function 'returning_dead_object' written out to 'input.c.test.html'















Errors in exception-handling

The checker keeps track of the per-thread exception state.  It will issue a
warning about any paths through functions returning a PyObject* that return
NULL for which the per-thread exception state has not been set:

input.c: In function 'test':
input.c:32:5: warning: returning (PyObject*)NULL without setting an exception





The checker does not emit the warning for cases where it is known that such
behavior is acceptable.  Currently this covers functions used as tp_iternext [http://docs.python.org/c-api/typeobj.html#tp_iternext] callbacks of a
PyTypeObject.

If you have a helper function that always sets an exception, you can mark this
property using a custom GCC attribute:

__attribute__((cpychecker_sets_exception))





which can be used to mark function declarations.

/* The checker automatically defines this preprocessor name when creating
   the custom attribute: */
 #if defined(WITH_CPYCHECKER_SETS_EXCEPTION_ATTRIBUTE)
   #define CPYCHECKER_SETS_EXCEPTION \
      __attribute__((cpychecker_sets_exception))
 #else
   #define CPYCHECKER_SETS_EXCEPTION
 #endif

 extern void raise_error(const char *msg)
   CPYCHECKER_SETS_EXCEPTION;





Given the above, the checker will know that an exception is set whenever a
call to raise_error() occurs.  It will also verify that raise_error()
actually behaves this way when compiling the implementation of raise_error.

There is an analogous attribute for the case where a function returns a
negative value to signify an error, where the exception state is set whenever
a negative value is returned:

__attribute__((cpychecker_negative_result_sets_exception))





which can be used to mark function declarations.

/* The checker automatically defines this preprocessor name when creating
   the custom attribute: */
 #if defined(WITH_CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION_ATTRIBUTE)
   #define CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION \
      __attribute__((cpychecker_negative_result_sets_exception))
 #else
   #define CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION
 #endif

 extern int foo(void)
   CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION;





Given the above, the checker will know that an exception is raised whenever a
call to foo returns a negative value.  It will also verify that foo
actually behaves this way when compiling the implementation of foo.

The checker already knows about many of the functions within the CPython API
which behave this way.




Format string checking

The checker will analyze some Python APIs that take format strings [http://docs.python.org/c-api/arg.html]  and detect mismatches between the
number and types of arguments that are passed in, as compared with those
described by the format string.

It currently verifies the arguments to the following API entrypoints:



	PyArg_ParseTuple [http://docs.python.org/c-api/arg.html#PyArg_ParseTuple]


	PyArg_ParseTupleAndKeywords [http://docs.python.org/c-api/arg.html#PyArg_ParseTupleAndKeywords]


	PyArg_Parse [http://docs.python.org/c-api/arg.html#PyArg_Parse]


	Py_BuildValue [http://docs.python.org/c-api/arg.html#Py_BuildValue]


	PyObject_CallFunction [http://docs.python.org/c-api/object.html#PyObject_CallFunction]


	PyObject_CallMethod [http://docs.python.org/c-api/object.html#PyObject_CallMethod]







along with the variants that occur if you define PY_SSIZE_T_CLEAN before
#include <Python.h>.

For example, type mismatches between int vs long can lead to flaws
when the code is compiled on big-endian 64-bit architectures, where
sizeof(int) != sizeof(long) and the in-memory layout of those types differs
from what you might expect.

The checker will also issue a warning if the list of keyword arguments in a
call to PyArg_ParseTupleAndKeywords is not NULL-terminated.


Note

All of the various “#” codes in these format strings are affected by
the presence of the macro PY_SSIZE_T_CLEAN. If the macro was defined
before including Python.h, the various lengths for these format codes are of
C type Py_ssize_t rather than int.

This behavior was clarified in the Python 3 version of the C API
documentation, though the Python 2 version of the API docs leave the matter
of which codes are affected somewhat ambiguous.

Nevertheless, the API does work this way in Python 2: all format codes
with a “#” do work this way.

Internally, the C preprocessor converts such function calls into invocations
of:



	_PyArg_ParseTuple_SizeT


	_PyArg_ParseTupleAndKeywords_SizeT







The checker handles this behavior correctly, by checking “#” codes in the
regular functions against int and those in the modified functions against
Py_ssize_t.




Associating PyTypeObject instances with compile-time types

The “O!” format code to PyArg_ParseTuple takes a PyTypeObject followed
by the address of an object.  This second argument can point to a
PyObject*, but it can also point to a pointer to a derived class.

For example, CPython’s own implementation contains code like this:

static PyObject *
unicodedata_decomposition(PyObject *self, PyObject *args)
{
    PyUnicodeObject *v;

    /* ...snip... */

    if (!PyArg_ParseTuple(args, "O!:decomposition",
                          &PyUnicode_Type, &v))

    /* ...etc... */





in which the input argument is written out into the PyUnicodeObject*,
provided that it is indeed a unicode instance.

When the cpychecker verifies the types in this format string it verifies that
the run-time type of the PyTypeObject matches the compile-time type
(PyUnicodeObject *).   It is able to do this since it contains hard-coded
associations between these worlds for all of Python’s built-in types: for the
above case, it “knows” that PyUnicode_Type is associated with
PyUnicodeObject.

If you need to provide a similar association for an extension type, the checker
provides a custom GCC attribute:

__attribute__((cpychecker_type_object_for_typedef(typename)))





which can be used to mark PyTypeObject instance, giving the name of the typedef
that PyObject instances of that type can be safely cast to.

/* The checker automatically defines this preprocessor name when creating
   the custom attribute: */
#if defined(WITH_CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF_ATTRIBUTE)
  #define CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF(typename) \
     __attribute__((cpychecker_type_object_for_typedef(typename)))
#else
  /* This handles the case where we're compiling with a "vanilla"
     compiler that doesn't supply this attribute: */
  #define CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF(typename)
#endif

/* Define some PyObject subclass, as both a struct and a typedef */
struct OurObjectStruct {
    PyObject_HEAD
    /* other fields */
};
typedef struct OurObjectStruct OurExtensionObject;

/*
  Declare the PyTypeObject, using the custom attribute to associate it with
  the typedef above:
*/
extern PyTypeObject UserDefinedExtension_Type
  CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF("OurExtensionObject");





Given the above, the checker will associate the given PyTypeObject with the
given typedef.






Verification of PyMethodDef tables

The checker will verify the types within tables of PyMethodDef [http://docs.python.org/c-api/structures.html#PyMethodDef] initializers: the
callbacks are typically cast to PyCFunction, but the exact type needs to
correspond to the flags given.  For example (METH_VARARGS | METH_KEYWORDS)
implies a different function signature to the default, which the vanilla C
compiler has no way of verifying.

/*
  BUG: there's a mismatch between the signature of the callback and
  that implied by ml_flags below.
 */
static PyObject *widget_display(PyObject *self, PyObject *args);

static PyMethodDef widget_methods[] = {
    {"display",
     (PyCFunction)widget_display,
     (METH_VARARGS | METH_KEYWORDS), /* ml_flags */
     NULL},

    {NULL, NULL, 0, NULL} /* terminator */
};





Given the above, the checker will emit an error like this:

input.c:59:6: warning: flags do not match callback signature for 'widget_display' within PyMethodDef table
input.c:59:6: note: expected ml_meth callback of type "PyObject (fn)(someobject *, PyObject *args, PyObject *kwargs)" due to METH_KEYWORDS flag (3 arguments)
input.c:59:6: note: actual type of underlying callback: struct PyObject * <Tc53> (struct PyObject *, struct PyObject *) (2 arguments)
input.c:59:6: note: see http://docs.python.org/c-api/structures.html#PyMethodDef





It will also warn about tables of PyMethodDef initializers that are
lacking a NULL sentinel value to terminate the iteration:

static PyMethodDef widget_methods[] = {
    {"display",
     (PyCFunction)widget_display,
     0, /* ml_flags */
     NULL},

    /* BUG: this array is missing a NULL value to terminate
       the list of methods, leading to a possible segfault
       at run-time */
};





Given the above, the checker will emit this warning:

input.c:39:6: warning: missing NULL sentinel value at end of PyMethodDef table








Additional tests


	the checker will verify the argument lists of invocations of
PyObject_CallFunctionObjArgs [http://docs.python.org/c-api/object.html#PyObject_CallFunctionObjArgs] and
PyObject_CallMethodObjArgs [http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs],
checking that all of the arguments are of the correct type
(PyObject* or subclasses), and that the list is NULL-terminated:

input.c: In function 'test':
input.c:33:5: warning: argument 2 had type char[12] * but was expecting a PyObject* (or subclass)
input.c:33:5: warning: arguments to PyObject_CallFunctionObjArgs were not NULL-terminated












Limitations and caveats

Compiling with the checker is significantly slower than with “vanilla” gcc.
I have been focussing on correctness and features, rather than optimization.
I hope that it will be possible to greatly speed up the checker via
ahead-of-time compilation of the Python code (e.g. using Cython).

The checker does not yet fully implement all of C: expect to see Python
tracebacks when it encounters less common parts of the language.  (We’ll fix
those bugs as we come to them)

The checker has a rather simplistic way of tracking the flow through a
function: it builds a tree of all possible traces of execution through a
function.  This brings with it some shortcomings:



	In order to guarantee that the analysis terminates, the checker will only
track the first time through any loop, and stop analysing that trace for
subsequent iterations.  This appears to be good enough for detecting many
kinds of reference leaks, especially in simple wrapper code, but is clearly
suboptimal.


	In order to avoid combinatorial explosion, the checker will stop analyzing
a function once the trace tree gets sufficiently large.  When it reaches
this cutoff, a warning is issued:

input.c: In function 'add_module_objects':
input.c:31:1: note: this function is too complicated for the reference-count checker to analyze





To increase this limit, see the --maxtrans option.



	The checker doesn’t yet match up similar traces, and so a single bug that
affects multiple traces in the trace tree can lead to duplicate error
reports.







Only a subset of the CPython API has been modelled so far.  The functions
known to the checker are:

PyArg_Parse and _PyArg_Parse_SizeT [http://docs.python.org/c-api/arg.html#PyArg_Parse],
PyArg_ParseTuple and _PyArg_ParseTuple_SizeT [http://docs.python.org/c-api/arg.html#PyArg_ParseTuple],
PyArg_ParseTupleAndKeywords and _PyArg_ParseTupleAndKeywords_SizeT [http://docs.python.org/c-api/arg.html#PyArg_ParseTupleAndKeywords],
PyArg_UnpackTuple [http://docs.python.org/c-api/arg.html#PyArg_UnpackTuple],
Py_AtExit [http://docs.python.org/c-api/sys.html#Py_AtExit],
PyBool_FromLong [http://docs.python.org/c-api/bool.html#PyBool_FromLong],
Py_BuildValue and _Py_BuildValue_SizeT [http://docs.python.org/c-api/arg.html#Py_BuildValue],
PyCallable_Check [http://docs.python.org/c-api/object.html#PyCallable_Check],
PyCapsule_GetPointer [http://docs.python.org/c-api/capsule.html#PyCapsule_GetPointer],
PyCObject_AsVoidPtr [http://docs.python.org/c-api/cobject.html#PyCObject_AsVoidPtr],
PyCObject_FromVoidPtr [http://docs.python.org/c-api/cobject.html#PyCObject_FromVoidPtr],
PyCObject_FromVoidPtrAndDesc [http://docs.python.org/c-api/cobject.html#PyCObject_FromVoidPtrAndDesc],
PyCode_New [http://docs.python.org/c-api/code.html#PyCode_New],
PyDict_GetItem [http://docs.python.org/c-api/dict.html#PyDict_GetItem],
PyDict_GetItemString [http://docs.python.org/c-api/dict.html#PyDict_GetItemString],
PyDict_New [http://docs.python.org/c-api/dict.html#PyDict_New],
PyDict_SetItem [http://docs.python.org/c-api/dict.html#PyDict_SetItem],
PyDict_SetItemString [http://docs.python.org/c-api/dict.html#PyDict_SetItemString],
PyDict_Size [http://docs.python.org/c-api/dict.html#PyDict_Size],
PyErr_Format [http://docs.python.org/c-api/exceptions.html#PyErr_Format],
PyErr_NewException [http://docs.python.org/c-api/exceptions.html#PyErr_NewException],
PyErr_NoMemory [http://docs.python.org/c-api/exceptions.html#PyErr_NoMemory],
PyErr_Occurred [http://docs.python.org/c-api/exceptions.html#PyErr_Occurred],
PyErr_Print [http://docs.python.org/c-api/exceptions.html#PyErr_Print],
PyErr_PrintEx [http://docs.python.org/c-api/exceptions.html#PyErr_PrintEx],
PyErr_SetFromErrno [http://docs.python.org/c-api/exceptions.html#PyErr_SetFromErrno],
PyErr_SetFromErrnoWithFilename [http://docs.python.org/c-api/exceptions.html#PyErr_SetFromErrnoWithFilename],
PyErr_SetNone [http://docs.python.org/c-api/exceptions.html#PyErr_SetNone],
PyErr_SetObject [http://docs.python.org/c-api/exceptions.html#PyErr_SetObject],
PyErr_SetString [http://docs.python.org/c-api/exceptions.html#PyErr_SetString],
PyErr_WarnEx [http://docs.python.org/c-api/exceptions.html#PyErr_WarnEx],
PyEval_CallMethod,
PyEval_CallObjectWithKeywords,
PyEval_InitThreads [http://docs.python.org/c-api/init.html#PyEval_InitThreads],
PyEval_RestoreThread [http://docs.python.org/c-api/init.html#PyEval_RestoreThread],
PyEval_SaveThread [http://docs.python.org/c-api/init.html#PyEval_SaveThread],
Py_FatalError [http://docs.python.org/c-api/sys.html#Py_FatalError],
PyFile_SoftSpace [http://docs.python.org/c-api/file.html#PyFile_SoftSpace],
PyFile_WriteObject [http://docs.python.org/c-api/file.html#PyFile_WriteObject],
PyFile_WriteString [http://docs.python.org/c-api/file.html#PyFile_WriteString],
Py_Finalize [http://docs.python.org/c-api/init.html#Py_Finalize],
PyFrame_New,
Py_GetVersion [http://docs.python.org/c-api/init.html#Py_GetVersion],
PyGILState_Ensure [http://docs.python.org/c-api/init.html#PyGILState_Ensure],
PyGILState_Release [http://docs.python.org/c-api/init.html#PyGILState_Release],
PyImport_AddModule [http://docs.python.org/c-api/import.html#PyImport_AddModule],
PyImport_AppendInittab [http://docs.python.org/c-api/import.html#PyImport_AppendInittab],
PyImport_ImportModule [http://docs.python.org/c-api/import.html#PyImport_ImportModule],
Py_Initialize [http://docs.python.org/c-api/init.html#Py_Initialize],
Py_InitModule4_64,
PyInt_AsLong [http://docs.python.org/c-api/int.html#PyInt_AsLong],
PyInt_FromLong [http://docs.python.org/c-api/int.html#PyInt_FromLong],
PyList_Append [http://docs.python.org/c-api/list.html#PyList_Append],
PyList_GetItem [http://docs.python.org/c-api/list.html#PyList_GetItem],
PyList_New [http://docs.python.org/c-api/list.html#PyList_New],
PyList_SetItem [http://docs.python.org/c-api/list.html#PyList_SetItem],
PyList_Size [http://docs.python.org/c-api/list.html#PyList_Size],
PyLong_FromLong [http://docs.python.org/c-api/long.html#PyLong_FromLong],
PyLong_FromLongLong [http://docs.python.org/c-api/long.html#PyLong_FromLongLong],
PyLong_FromString [http://docs.python.org/c-api/long.html#PyLong_FromString],
PyLong_FromVoidPtr [http://docs.python.org/c-api/long.html#PyLong_FromVoidPtr],
PyMapping_Size [http://docs.python.org/c-api/mapping.html#PyMapping_Size],
PyMem_Free [http://docs.python.org/c-api/memory.html#PyMem_Free],
PyMem_Malloc [http://docs.python.org/c-api/memory.html#PyMem_Malloc],
PyModule_AddIntConstant [http://docs.python.org/c-api/module.html#PyModule_AddIntConstant],
PyModule_AddObject [http://docs.python.org/c-api/module.html#PyModule_AddObject],
PyModule_AddStringConstant [http://docs.python.org/c-api/module.html#PyModule_AddStringConstant],_,
PyModule_GetDict [http://docs.python.org/c-api/module.html#PyModule_GetDict],
PyNumber_Int [http://docs.python.org/c-api/number.html#PyNumber_Int],
PyNumber_Remainer [http://docs.python.org/c-api/number.html#PyNumber_Remainder],
PyObject_AsFileDescriptor [http://docs.python.org/c-api/object.html#PyObject_AsFileDescriptor],
PyObject_Call [http://docs.python.org/c-api/object.html#PyObject_Call],
PyObject_CallFunction and _PyObject_CallFunction_SizeT [http://docs.python.org/c-api/object.html#PyObject_CallFunction],
PyObject_CallFunctionObjArgs [http://docs.python.org/c-api/object.html#PyObject_CallFunctionObjArgs],
PyObject_CallMethod and _PyObject_CallMethod_SizeT [http://docs.python.org/c-api/object.html#PyObject_CallMethod],
PyObject_CallMethodObjArgs [http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs],
PyObject_CallObject [http://docs.python.org/c-api/object.html#PyObject_CallObject],
PyObject_GetAttr [http://docs.python.org/c-api/object.html#PyObject_GetAttr],
PyObject_GetAttrString [http://docs.python.org/c-api/object.html#PyObject_GetAttrString],
PyObject_GetItem [http://docs.python.org/c-api/object.html#PyObject_GetItem],
PyObject_GenericGetAttr [http://docs.python.org/c-api/object.html#PyObject_GenericGetAttr],
PyObject_GenericSetAttr [http://docs.python.org/c-api/object.html#PyObject_GenericSetAttr],
PyObject_HasAttrString [http://docs.python.org/c-api/object.html#PyObject_HasAttrString],
PyObject_IsTrue [http://docs.python.org/c-api/object.html#PyObject_IsTrue],
_PyObject_New,
PyObject_Repr [http://docs.python.org/c-api/object.html#PyObject_Repr],
PyObject_SetAttr [http://docs.python.org/c-api/object.html#PyObject_SetAttr],
PyObject_SetAttrString [http://docs.python.org/c-api/object.html#PyObject_SetAttrString],
PyObject_Str [http://docs.python.org/c-api/object.html#PyObject_Str],
PyOS_snprintf [http://docs.python.org/c-api/conversion.html#PyOS_snprintf],
PyRun_SimpleFileExFlags [http://docs.python.org/c-api/veryhigh.html#PyRun_SimpleFileExFlags],
PyRun_SimpleStringFlags [http://docs.python.org/c-api/veryhigh.html#PyRun_SimpleStringFlags],
PySequence_Concat [http://docs.python.org/c-api/sequence.html#PySequence_Concat],
PySequence_DelItem [http://docs.python.org/c-api/sequence.html#PySequence_DelItem],
PySequence_GetItem [http://docs.python.org/c-api/sequence.html#PySequence_GetItem],
PySequence_GetSlice [http://docs.python.org/c-api/sequence.html#PySequence_GetSlice],
PySequence_SetItem [http://docs.python.org/c-api/sequence.html#PySequence_SetItem],
PySequence_Size [http://docs.python.org/c-api/sequence.html#PySequence_Size],
PyString_AsString [http://docs.python.org/c-api/string.html#PyString_AsString],
PyString_Concat [http://docs.python.org/c-api/string.html#PyString_Concat],
PyString_ConcatAndDel [http://docs.python.org/c-api/string.html#PyString_ConcatAndDel],
PyString_FromFormat [http://docs.python.org/c-api/string.html#PyString_FromFormat],
PyString_FromString [http://docs.python.org/c-api/string.html#PyString_FromString],
PyString_FromStringAndSize [http://docs.python.org/c-api/string.html#PyString_FromStringAndSize],
PyString_InternFromString [http://docs.python.org/c-api/string.html#PyString_InternFromString],
PyString_Size [http://docs.python.org/c-api/string.html#PyString_Size],
PyStructSequence_InitType,
PyStructSequence_New,
PySys_GetObject [http://docs.python.org/c-api/sys.html#PySys_GetObject],
PySys_SetObject [http://docs.python.org/c-api/sys.html#PySys_SetObject],
PyTraceBack_Here,
PyTuple_GetItem [http://docs.python.org/c-api/tuple.html#PyTuple_GetItem],
PyTuple_New [http://docs.python.org/c-api/tuple.html#PyTuple_New],
PyTuple_Pack [http://docs.python.org/c-api/tuple.html#PyTuple_Pack],
PyTuple_SetItem [http://docs.python.org/c-api/tuple.html#PyTuple_SetItem],
PyTuple_Size [http://docs.python.org/c-api/tuple.html#PyTuple_Size],
PyType_IsSubtype [http://docs.python.org/dev/c-api/type.html#PyType_IsSubtype],
PyType_Ready [http://docs.python.org/dev/c-api/type.html#PyType_Ready],
PyUnicodeUCS4_AsUTF8String [http://docs.python.org/c-api/unicode.html#PyUnicode_AsUTF8String],
PyUnicodeUCS4_DecodeUTF8 [http://docs.python.org/c-api/unicode.html#PyUnicode_DecodeUTF8],
PyWeakref_GetObject [http://docs.python.org/c-api/weakref.html#PyWeakref_GetObject]

The checker also has some knowledge about these SWIG-generated functions:
SWIG_Python_ErrorType,
SWIG_Python_SetErrorMsg

and of this Cython-generated function:
__Pyx_GetStdout




Ideas for future tests

Here’s a list of some other C coding bugs I intend for the tool to detect:



	tp_traverse errors (which can mess up the garbage collector); missing it
altogether, or omitting fields


	errors in GIL-handling


	lock/release mismatches


	missed opportunities to release the GIL (e.g. compute-intensive
functions; functions that wait on IO/syscalls)











Ideas for other tests are most welcome (patches even more so!)

We will probably need various fallbacks and suppression modes for turning off
individual tests (perhaps pragmas, perhaps compile-line flags, etc)




Reusing this code for other projects

It may be possible to reuse the analysis engine from cpychecker for other
kinds of analysis - hopefully the python-specific parts are relatively
self-contained.  Email the gcc-python-plugin’s mailing list [https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/] if you’re
interested in adding verifiers for other kinds of code.




Common mistakes

Here are some common mistakes made using the CPython extension API, along with
the fixes.


Missing Py_INCREF() on Py_None

The following is typically incorrect: a method implementation is required to
return a new reference, but this code isn’t incrementing the reference count
on Py_None.

PyObject*
some_method(PyObject *self, PyObject *args)
{
    [...snip...]

    /* BUG: loses a reference to Py_None */
    return Py_None;
}





If called enough, this could cause Py_None to be deallocated, crashing the
interpreter:

Fatal error: deallocating None





The Py_RETURN_NONE [http://docs.python.org/c-api/none.html#Py_RETURN_NONE]
macro takes care of incrementing the reference count for you:

PyObject*
some_method(PyObject *self, PyObject *args)
{
    [...snip...]

    /* Fixed version of the above: */
    Py_RETURN_NONE;
}








Reference leak in Py_BuildValue

Py_BuildValue [http://docs.python.org/c-api/arg.html#Py_BuildValue] with
“O” adds a new reference on the object for use by the new tuple, hence the
following code leaks the reference already owned on the object:

/* BUG: reference leak: */
return Py_BuildValue("O", some_object_we_own_a_ref_on);





Py_BuildValue [http://docs.python.org/c-api/arg.html#Py_BuildValue] with
“N” steals the reference (and copes with it being NULL by propagating the
exception):

/* Fixed version of the above: */
return Py_BuildValue("N", some_object_we_own_a_ref_on);













          

      

      

    

  

    
      
          
            
  
Success Stories

If you use the gcc python plugin to improve your code, we’d love to hear about
it.

If you want to share a success story here, please email the plugin’s mailing list [https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/].


The GNU Debugger [http://sourceware.org/gdb/]

Bugs found in gdb by compiling it with the plugin’s
gcc-with-cpychecker script:



	http://sourceware.org/bugzilla/show_bug.cgi?id=13308


	http://sourceware.org/bugzilla/show_bug.cgi?id=13309


	http://sourceware.org/bugzilla/show_bug.cgi?id=13310


	http://sourceware.org/bugzilla/show_bug.cgi?id=13316


	http://sourceware.org/ml/gdb-patches/2011-06/msg00376.html


	http://sourceware.org/ml/gdb-patches/2011-10/msg00391.html


	http://sourceware.org/bugzilla/show_bug.cgi?id=13331







Tom Tromey also wrote specialized Python scripts to use the GCC plugin to
locate bugs within GDB.

One of his scripts analyzes gdb’s resource-management code, which found some
resource leaks and a possible crasher:



	http://sourceware.org/ml/gdb-patches/2011-06/msg00408.html







The other generates a whole-program call-graph, annotated with information
on gdb’s own exception-handling mechanism.  A script then finds places where
these exceptions were not properly integrated with gdb’s embedded Python
support:



	http://sourceware.org/ml/gdb/2011-11/msg00002.html


	http://sourceware.org/bugzilla/show_bug.cgi?id=13369










LibreOffice [http://www.libreoffice.org/]

Stephan Bergmann wrote a script to analyze LibreOffice’s source code, detecting
a particular usage pattern of C++ method calls:



	https://fedorahosted.org/pipermail/gcc-python-plugin/2011-December/000136.html


	https://bugs.freedesktop.org/show_bug.cgi?id=43460










psycopg [http://initd.org/psycopg/]

Daniele Varrazzo used the plugin’s gcc-with-cpychecker
script on psycopg [http://initd.org/psycopg/], the popular Python interface
to PostgreSQL [http://www.postgresql.org/], and was able to find and fix
numerous subtle errors:



	https://fedorahosted.org/pipermail/gcc-python-plugin/2012-March/000229.html


	http://initd.org/psycopg/articles/2012/03/29/psycopg-245-released/










pycups

Bugs found in the Python bindings for the CUPS API [http://cyberelk.net/tim/software/pycups/] by compiling it with the
plugin’s gcc-with-cpychecker script:



	https://fedorahosted.org/pycups/ticket/17










python-krbV

Bug found in the Python bindings for the Kerberos 5 API [https://fedorahosted.org/python-krbV/] by compiling it with the
plugin’s gcc-with-cpychecker script:



	https://fedorahosted.org/python-krbV/ticket/1










Bugs found in itself

Bugs found and fixed in the gcc Python plugin itself, by running the the
plugin’s gcc-with-cpychecker script when compiling another
copy:



	various reference counting errors:


	http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=a9f48fac24a66c77007d99bf23f2eab188eb909e


	http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=2922ad81c8e0ea954d462433ecc83d86d9ebab68


	http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4642a564e03c9e2c8114bca206205ad9c8fbc308>






	bad format string: https://fedorahosted.org/pipermail/gcc-python-plugin/2011-August/000065.html


	minor const-correctness error: http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4fe4a83288e04be35a96d0bfec332197fb32c358













          

      

      

    

  

    
      
          
            
  
Getting Involved

The plugin’s web site is this GitHub repository:


https://github.com/davidmalcolm/gcc-python-plugin




The primary place for discussion of the plugin is the mailing list:
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin

A pre-built version of the HTML documentation can be seen at:

http://readthedocs.org/docs/gcc-python-plugin/en/latest/index.html

The project’s mailing list is here: https://fedorahosted.org/mailman/listinfo/gcc-python-plugin


Ideas for using the plugin

Here are some ideas for possible uses of the plugin.  Please email the
plugin’s mailing list if you get any of these working (or if you have other
ideas!).  Some guesses as to the usefulness and difficulty level are given in
parentheses after some of the ideas.  Some of them might require new attributes,
methods and/or classes to be added to the plugin (to expose more of GCC
internals), but you can always ask on the mailing list if you need help.


	extend the libcpychecker code to add checking for the standard C library.
For example, given this buggy C code:

int foo() {
     FILE *src, *dst;
     src = fopen("source.txt", "r");
     if (!src) return -1;

     dst = fopen("dest.txt", "w");
     if (!dst) return -1;  /* <<<< BUG: this error-handling leaks "src" */

     /* etc, copy src to dst (or whatever) */
}





it would be great if the checker could emit a compile-time warning about
the buggy error-handling path above (or indeed any paths through
functions that leak FILE*, file descriptors, or other resources). The
way to do this (I think) is to add a new Facet subclass to
libcpychecker, analogous to the CPython facet subclass that already
exists (though the facet handling is probably rather messy right now).
(useful but difficult, and a lot of work)



	extend the libcpychecker code to add checking for other libraries.  For
example:


	reference-count checking within glib [http://developer.gnome.org/glib/]
and gobject




(useful for commonly-used C libraries but difficult, and a lot of work)



	detection of C++ variables with non-trivial constructors that will need to be
run before main - globals and static locals (useful, ought to be fairly
easy)


	finding unused parameters in definitions of non-virtual functions, so that
they can be removed - possibly removing further dead code.  Some care would
be needed for function pointers.  (useful, ought to be fairly easy)


	detection of bad format strings (see e.g. https://lwn.net/Articles/478139/ )


	compile gcc’s own test suite with the cpychecker code, to reuse their
coverage of C and thus shake out more bugs in the checker (useful and easy)


	a new PyPy gc root finder [http://pypy.readthedocs.org/en/latest/config/translation.gcrootfinder.html],
running inside GCC (useful for PyPy, but difficult)


	reimplement GCC-XML [http://www.gccxml.org/HTML/Index.html] in Python
(probably fairly easy, but does anyone still use GCC-XML now that GCC
supports plugins?)


	.gir generation for GObject Introspection [http://live.gnome.org/GObjectIntrospection]
(unknown if the GNOME developers are actually interested in this though)


	create an interface that lets you view the changing internal representation
of each function as it’s modified by the various optimization pases: lets
you see which passes change a given function, and what the changes are
(might be useful as a teaching tool, and for understanding GCC)


	add array bounds checking to C (to what extent can GCC already do this?)


	taint mode [http://perldoc.perl.org/perlsec.html#Taint-mode] for GCC!
e.g. detect usage of data from network/from disk/etc; identify certain data
as untrusted, and track how it gets used; issue a warning (very useful, but
very difficult: how does untainting work? what about pointers and memory
regions?  is it just too low-level?)


	implement something akin to PyPy’s pygame-based viewer, for viewing control
flow graphs and tree structures: an OpenGL-based GUI giving a fast,
responsive UI for navigating the data - zooming, panning, search, etc.  (very
useful, and fairly easy)


	generation of pxd files for Cython [http://comments.gmane.org/gmane.comp.python.cython.user/5970]
(useful for Cython, ought to be fairly easy)


	reverse-engineering a .py or .pyx file from a .c file: turning legacy C
Python extension modules back into Python or Cython sources (useful but
difficult)







Tour of the C code

The plugin’s C code heavily uses Python’s extension API, and so it’s worth
knowing this API if you’re going to hack on this part of the project.  A good
tutorial for this can be seen here:


http://docs.python.org/extending/index.html




and detailed notes on it are here:


http://docs.python.org/c-api/index.html




Most of the C “glue” for creating classes and registering their methods and
attributes is autogenerated.  Simple C one-liners tend to appear in the
autogenerated C files, whereas longer implementations are broken out into
a hand-written C file.

Adding new methods and attributes to the classes requires editing the
appropriate generate-*.py script to wire up the new entrypoint.  For
very simple attributes you can embed the C code directly there, but
anything that’s more than a one-liner should have its implementation in
the relevant C file.

For example, to add new methods to a gcc.Cfg you’d edit:



	generate-cfg-c.py to add the new methods and attributes to the relevant
tables of callbacks


	gcc-python-wrappers.h to add declarations of the new C functions


	gcc-python-cfg.c to add the implementations of the new C functions







Please try to make the API “Pythonic”.

My preference with getters is that if the implementation is a simple
field lookup, it should be an attribute (the “getter” is only implicit,
existing at the C level):

print(bb.loopcount)





whereas if getting the result involves some work, it should be an
explicit method of the class (where the “getter” is explicit at the
Python level):

print(bb.get_loop_count())








Using the plugin to check itself

Given that the cpychecker code implements new error-checking for Python C
code, and that the underlying plugin is itself an example of such code, it’s
possible to build the plugin once, then compile it with itself (using
CC=gcc-with-cpychecker as a Makefile variable:

$ make CC=/path/to/a/clean/build/of/the/plugin/gcc-with-cpychecker





Unfortunately it doesn’t quite compile itself cleanly right
now.




Test suite

There are three test suites:



	testcpybuilder.py: a minimal test suite which is used before the plugin
itself is built.  This verifies that the cpybuilder code works.


	make test-suite (aka run-test-suite.py): a test harness and suite
which was written for this project.  See the notes below on patches.


	make testcpychecker and testcpychecker.py: a suite based on Python’s
unittest module










Debugging the plugin’s C code

The gcc binary is a harness that launches subprocesses, so it can be
fiddly to debug.  Exactly what it launches depend on the inputs and
options. Typically, the subprocesses it launches are (in order):



	cc1 or cc1plus: The C or C++ compiler, generating a .s assember
file.


	as: The assembler, converting a .s assembler file to a .o object
file.


	collect2: The linker, turning one or more .o files into an executable
(if you’re going all the way to building an a.out-style executable).







The easiest way to debug the plugin is to add these parameters to the gcc
command line (e.g. to the end):

-wrapper gdb,--args





Note the lack of space between the comma and the –args.

e.g.:

./gcc-with-python examples/show-docs.py test.c -wrapper gdb,--args





This will invoke each of the subprocesses in turn under gdb: e.g. cc1,
as and collect2; the plugin runs with cc1 (cc1plus for C++ code).

For example:

$ ./gcc-with-cpychecker -c -I/usr/include/python2.7 demo.c -wrapper gdb,--args

GNU gdb (GDB) Fedora 7.6.50.20130731-19.fc20
[...snip...]
Reading symbols from /usr/libexec/gcc/x86_64-redhat-linux/4.8.2/cc1...Reading symbols from /usr/lib/debug/usr/libexec/gcc/x86_64-redhat-linux/4.8.2/cc1.debug...done.
done.
(gdb) run
[...etc...]





Another way to do it is to add “-v” to the gcc command line
(verbose), so that it outputs the commands that it’s running.  You can then use
this to launch:

$ gdb --args ACTUAL PROGRAM WITH ACTUAL ARGS





to debug the subprocess that actually loads the Python plugin.

For example:

$ gcc -v -fplugin=$(pwd)/python.so -fplugin-arg-python-script=test.py test.c





on my machine emits this:

Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/libexec/gcc/x86_64-redhat-linux/4.6.1/lto-wrapper
Target: x86_64-redhat-linux
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-bootstrap --enable-shared --enable-threads=posix --enable-checking=release --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-object --enable-linker-build-id --enable-languages=c,c++,objc,obj-c++,java,fortran,ada,go,lto --enable-plugin --enable-java-awt=gtk --disable-dssi --with-java-home=/usr/lib/jvm/java-1.5.0-gcj-1.5.0.0/jre --enable-libgcj-multifile --enable-java-maintainer-mode --with-ecj-jar=/usr/share/java/eclipse-ecj.jar --disable-libjava-multilib --with-ppl --with-cloog --with-tune=generic --with-arch_32=i686 --build=x86_64-redhat-linux
Thread model: posix
gcc version 4.6.1 20110908 (Red Hat 4.6.1-9) (GCC)
COLLECT_GCC_OPTIONS='-v' '-fplugin=/home/david/coding/gcc-python/gcc-python/contributing/python.so' '-fplugin-arg-python-script=test.py' '-mtune=generic' '-march=x86-64'
 /usr/libexec/gcc/x86_64-redhat-linux/4.6.1/cc1 -quiet -v -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin test.c -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin -quiet -dumpbase test.c -mtune=generic -march=x86-64 -auxbase test -version -fplugin=/home/david/coding/gcc-python/gcc-python/contributing/python.so -fplugin-arg-python-script=test.py -o /tmp/cc1Z3b95.s
(output of the script follows)





This allows us to see the line in which cc1 is invoked: in the above
example, it’s the final line before the output from the script:

/usr/libexec/gcc/x86_64-redhat-linux/4.6.1/cc1 -quiet -v -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin test.c -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin -quiet -dumpbase test.c -mtune=generic -march=x86-64 -auxbase test -version -fplugin=/home/david/coding/gcc-python/gcc-python/contributing/python.so -fplugin-arg-python-script=test.py -o /tmp/cc1Z3b95.s





We can then take this line and rerun this subprocess under gdb by adding
gdb –args to the front like this:

$ gdb --args /usr/libexec/gcc/x86_64-redhat-linux/4.6.1/cc1 -quiet -v -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin test.c -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin -quiet -dumpbase test.c -mtune=generic -march=x86-64 -auxbase test -version -fplugin=/home/david/coding/gcc-python/gcc-python/contributing/python.so -fplugin-arg-python-script=test.py -o /tmp/cc1Z3b95.s





This approach to obtaining a debuggable process doesn’t seem to work in the
presence of ccache, in that it writes to a temporary directory with a name
that embeds the process ID each time, which then gets deleted.  I’ve worked
around this by uninstalling ccache, but apparently setting:

CCACHE_DISABLE=1





before invoking gcc -v ought to also work around this.

I’ve also been running into this error from gdb:

[Thread debugging using libthread_db enabled]
Cannot find new threads: generic error





Apparently this happens when debugging a process that uses dlopen to load a
library that pulls in libpthread (as does gcc when loading in my plugin), and
a workaround is to link cc1 with -lpthread

The workaround I’ve been using (to avoid the need to build my own gcc) is to
use LD_PRELOAD, either like this:

LD_PRELOAD=libpthread.so.0 gdb --args ARGS GO HERE...





or this:

(gdb) set environment LD_PRELOAD libpthread.so.0






Handy tricks

Given a (PyGccTree*) named “self”:

(gdb) call debug_tree(self->t)





will use GCC’s prettyprinter to dump the embedded (tree*) and its descendants
to stderr; it can help to put a breakpoint on that function too, to explore the
insides of that type.






Patches

The project doesn’t have any copyright assignment requirement: you get
to keep copyright in any contributions you make, though AIUI there’s an
implicit licensing of such contributions under the GPLv3 or later, given
that any contribution is a derived work of the plugin, which is itself
licensed under the GPLv3 or later.   I’m not a lawyer, though.

The Python code within the project is intended to be usable with both Python 2
and Python 3 without running 2to3: please stick to the common subset of the two
languages.  For example, please write print statements using parentheses:

print(42)





Under Python 2 this is a print statement with a parenthesized number: (42)
whereas under Python 3 this is an invocation of the print function.

Please try to stick PEP-8 [http://www.python.org/dev/peps/pep-0008/] for
Python code, and to PEP-7 [http://www.python.org/dev/peps/pep-0007/] for
C code (rather than the GNU coding conventions).

In C code, I strongly prefer to use multiline blocks throughout, even where
single statements are allowed (e.g. in an “if” statement):

if (foo()) {
    bar();
}





as opposed to:

if (foo())
    bar();





since this practice prevents introducing bugs when modifying such code, and the
resulting “diff” is much cleaner.

A good patch ought to add test cases for the new code that you write, and
documentation.

The test cases should be grouped in appropriate subdirectories of “tests”.
Each new test case is a directory with an:



	input.c (or input.cc for C++)


	script.py exercising the relevant Python code


	stdout.txt containing the expected output from the script.







For more realistic examples of test code, put them below tests/examples;
these can be included by reference from the docs, so that we have
documentation that’s automatically verified by run-test-suite.py, and
users can use this to see the relationship between source-code constructs
and the corresponding Python objects.

More information can be seen in run-test-suite.py

By default, run-test-suite.py will invoke all the tests.  You can pass it
a list of paths and it run all tests found in those paths and below.

You can generate the “gold” stdout.txt by hacking up this line in
run-test-suite.py:

out.check_for_diff(out.actual, err.actual, p, args, 'stdout', 0)





so that the final 0 is a 1 (the “writeback” argument to check_for_diff).
There may need to be a non-empty stdout.txt file in the directory for
this to take effect though.

Unfortunately, this approach over-specifies the selftests, making them
rather “brittle”.  Improvements to this approach would be welcome.

To directly see the GCC command line being invoked for each test, and to see
the resulting stdout and stderr, add –show to the arguments of
run-test-suite.py.

For example:

$ python run-test-suite.py tests/plugin/diagnostics --show
tests/plugin/diagnostics: gcc -c -o tests/plugin/diagnostics/output.o -fplugin=/home/david/coding/gcc-python-plugin/python.so -fplugin-arg-python-script=tests/plugin/diagnostics/script.py -Wno-format tests/plugin/diagnostics/input.c
tests/plugin/diagnostics/input.c: In function 'main':
tests/plugin/diagnostics/input.c:23:1: error: this is an error (with positional args)
tests/plugin/diagnostics/input.c:23:1: error: this is an error (with keyword args)
tests/plugin/diagnostics/input.c:25:1: warning: this is a warning (with positional args) [-Wdiv-by-zero]
tests/plugin/diagnostics/input.c:25:1: warning: this is a warning (with keyword args) [-Wdiv-by-zero]
tests/plugin/diagnostics/input.c:23:1: error: a warning with some embedded format strings %s and %i
tests/plugin/diagnostics/input.c:25:1: warning: this is an unconditional warning [enabled by default]
tests/plugin/diagnostics/input.c:25:1: warning: this is another unconditional warning [enabled by default]
expected error was found: option must be either None, or of type gcc.Option
tests/plugin/diagnostics/input.c:23:1: note: This is the start of the function
tests/plugin/diagnostics/input.c:25:1: note: This is the end of the function
OK
1 success; 0 failures; 0 skipped










Documentation

We use Sphinx for documentation, which makes it easy
to keep the documentation up-to-date.   For notes on how to document
Python in the .rst form accepted by Sphinx, see e.g.:


http://sphinx.pocoo.org/domains.html#the-python-domain








          

      

      

    

  

    
      
          
            
  
Miscellanea

The following odds and ends cover the more esoteric aspects of GCC, and are
documented here for completeness.  They may or may not be useful when writing
scripts.



	Interprocedural analysis (IPA)

	Whole-program Analysis via Link-Time Optimization (LTO)

	Inspecting GCC’s command-line options

	Working with GCC’s tunable parameters

	Working with the preprocessor

	Version handling

	Register Transfer Language (RTL)









          

      

      

    

  

    
      
          
            
  
Interprocedural analysis (IPA)

GCC builds a “call graph”, recording which functions call which other
functions, and it uses this for various optimizations.

It is constructed by the “*build_cgraph_edges” pass.

In case it’s of interest, it is available via the following Python API:


	
gcc.get_callgraph_nodes()

	Get a list of all gcc.CallgraphNode instances






	
gccutils.callgraph_to_dot()

	Return the GraphViz source for a rendering of the current callgraph, as a
string.

Here’s an example of such a rendering:


[image: image of a call graph]







	
class gcc.CallgraphNode

	
	
decl

	The gcc.FunctionDecl for this node within the callgraph






	
callees

	The function calls made by this function, as a list of gcc.CallgraphEdge instances






	
callers

	The places that call this function, as a list of gcc.CallgraphEdge instances





Internally, this wraps a struct cgraph_node *






	
class gcc.CallgraphEdge

	
	
caller

	The function that makes this call, as a gcc.CallgraphNode






	
callee

	The function that is called here, as a gcc.CallgraphNode






	
call_stmt

	The gcc.GimpleCall statememt for the function call





Internally, this wraps a struct cgraph_edge *









          

      

      

    

  

    
      
          
            
  
Whole-program Analysis via Link-Time Optimization (LTO)

You can enable GCC’s “link time optimization” feature by passing -flto.

When this is enabled, gcc adds extra sections to the compiled .o file
containing the SSA-Gimple internal representation of every function, so that
this SSA representation is available at link-time.  This allows gcc to inline
functions defined in one source file into functions defined in another
source file at link time.

Although the feature is intended for optimization, we can also use it for
code analysis, and it’s possible to run the Python plugin at link time.

This means we can do interprocedural analysis across multiple source files.


Warning

Running a gcc plugin from inside link-time optimization is
rather novel, and you’re more likely to run into bugs.  See e.g.
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54962



An invocation might look like this:

gcc \
   -flto \
   -flto-partition=none \
   -v \
   -fplugin=PATH/TO/python.so \
   -fplugin-arg-python-script=PATH/TO/YOUR/SCRIPT.py \
   INPUT-1.c \
   INPUT-2.c \
   ...
   INPUT-n.c





Looking at the above options in turn:



	-flto enables link-time optimization


	-flto-partition=none : by default, gcc with LTO partitions the code
and generates summary information for each partition, then combines the
results of the summaries (known as “WPA” and “LTRANS” respectively).
This appears to be of use for optimization, but to get at the function
bodies, for static analysis, you should pass this option, which instead
gathers all the code into one process.


	-v means “verbose” and is useful for seeing all of the subprograms
that gcc invokes, along with their command line options.  Given the
above options, you should see invocations of cc1 (the C compiler),
collect2 (the linker) and lto1 (the link-time optimizer).







For example,

$ ./gcc-with-python \
  examples/show-lto-supergraph.py \
  -flto \
  -flto-partition=none \
  tests/examples/lto/input-*.c





will render a bitmap of the supergraph like this:



[image: image of a supergraph]






	
gcc.is_lto()

	
	Return type

	bool





Determine whether or not we’re being invoked during link-time
optimization (i.e. from within the lto1 program)


Warning

The underlying boolean is not set up until passes are being
invoked: it is always False during the initial invocation of the
Python script.











          

      

      

    

  

    
      
          
            
  
Inspecting GCC’s command-line options

GCC’s command-line options are visible from Python scripts as instances of
gcc.Option.


	
class gcc.Option

	Wrapper around one of GCC’s command-line options.

You can locate a specific option using its text attribute:

option = gcc.Option('-Wdiv-by-zero')





The plugin will raise a ValueError if the option is not recognized.

It does not appear to be possible to create new options from the plugin.


	
text

	(string) The text used at the command-line to affect this option
e.g. -Werror.






	
help

	(string) The help text for this option (e.g. “Warn about uninitialized
automatic variables”)






	
is_enabled

	(bool) Is this option enabled?


Note

Unfortunately, for many options, the internal implementation
makes it difficult to extract this.  The plugin will raise a
NotImplementedError exception when querying this attribute for such
an option.

Calling gcc.warning() with such an option will lead to GCC’s
warning machinery treating the option as enabled and emitting a
warning, regardless of whether or not the option was actually enabled.

It appears that this must be fixed on an option-by-option basis within
the plugin.








	
is_driver

	(bool) Is this a driver option?






	
is_optimization

	(bool) Does this option control an optimization?






	
is_target

	(bool) Is this a target-specific option?






	
is_warning

	(bool) Does this option control a warning message?





Internally, the class wraps GCC’s enum opt_code (and thus a struct cl_option)






	
gcc.get_option_list()

	Returns a list of all gcc.Option instances.






	
gcc.get_option_dict()

	Returns a dictionary, mapping from the option names to gcc.Option instances









          

      

      

    

  

    
      
          
            
  
Working with GCC’s tunable parameters

GCC has numerous tunable parameters, which are integer values, tweakable at
the command-line by:

--param <name>=<value>





A detailed description of the current parameters (in GCC 4.6.0) can be seen at
http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Optimize-Options.html#Optimize-Options
(search for “–param” on that page; there doesn’t seem to be an anchor to the list)

The parameters are visible from Python scripts using the following API:


	
gcc.get_parameters()

	Returns a dictionary, mapping from the option names to gcc.Parameter instances






	
class gcc.Parameter

	
	
option

	(string) The name used with the command-line –param switch to set this value






	
current_value

	(int/long)






	
default_value

	(int/long)






	
min_value

	(int/long) The minimum acceptable value






	
max_value

	(int/long) The maximum acceptable value, if greater than min_value






	
help

	(string) A short description of the option.













          

      

      

    

  

    
      
          
            
  
Working with the preprocessor

For languages that support a preprocessor, it’s possible to inject new
“built-in” macros into the compilation from a Python script.

The motivation for this is to better support the creation of custom
attributes, by creating preprocessor names that can be tested against.


	
gcc.define_macro(argument)

	Defines a preprocessor macro with the given argument, which may be
of use for code that needs to test for the presence of your script.
The argument can either be a simple name, or a name with a
definition:

gcc.define_macro("SOMETHING")  # define as the empty string
gcc.define_macro("SOMETHING=72")





This function can only be called from within specific event callbacks,
since it manipulates the state of the preprocessor for a given source
file.

For now, only call it in a handler for the event gcc.PLUGIN_ATTRIBUTES:

import gcc

def attribute_callback_for_claims_mutex(*args):
    print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
    print('attribute_callback_for_releases_mutex called: args: %s' % (args, ))

def register_our_attributes():
    gcc.register_attribute('claims_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_claims_mutex)
    gcc.define_macro('WITH_ATTRIBUTE_CLAIMS_MUTEX')

    gcc.register_attribute('releases_mutex',
                           1, 1,
                           False, False, False,
                           attribute_callback_for_releases_mutex)
    gcc.define_macro('WITH_ATTRIBUTE_RELEASES_MUTEX')

# Wire up our callback:
gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,
                      register_our_attributes)














          

      

      

    

  

    
      
          
            
  
Version handling


	
gcc.get_gcc_version()

	Get the gcc.Version for this version of GCC






	
gcc.get_plugin_gcc_version()

	Get the gcc.Version that this plugin was compiled with





Typically the above will be equal (the plugin-loading mechanism currently
checks for this, and won’t load the plugin otherwise).

On my machine, running this currently gives:

gcc.Version(basever='4.6.0', datestamp='20110321', devphase='Red Hat 4.6.0-0.15', revision='', ...)






	
class gcc.Version

	Information on the version of GCC being run.  The various fields are
accessible by name and by index.


	
basever

	(string) On my machine, this has value:

'4.6.0'










	
datestamp

	(string) On my machine, this has value:

'20110321'










	
devphase

	(string) On my machine, this has value:

'Red Hat 4.6.0-0.15'










	
revision

	(string) On my machine, this is the empty string






	
configuration_arguments

	(string) On my machine, this has value:

'../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-bootstrap --enable-shared --enable-threads=posix --enable-checking=release --with-system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-object --enable-linker-build-id --enable-languages=c,c++,objc,obj-c++,java,fortran,ada,go,lto --enable-plugin --enable-java-awt=gtk --disable-dssi --with-java-home=/usr/lib/jvm/java-1.5.0-gcj-1.5.0.0/jre --enable-libgcj-multifile --enable-java-maintainer-mode --with-ecj-jar=/usr/share/java/eclipse-ecj.jar --disable-libjava-multilib --with-ppl --with-cloog --with-tune=generic --with-arch_32=i686 --build=x86_64-redhat-linux'









Internally, this is a wrapper around a struct plugin_gcc_version






	
gcc.GCC_VERSION

	(int) This corresponds to the value of GCC_VERSION within GCC’s internal
code: (MAJOR * 1000) + MINOR:







	GCC version

	Value of gcc.GCC_VERSION





	4.6

	4006



	4.7

	4007



	4.8

	4008



	4.9

	4009














          

      

      

    

  

    
      
          
            
  
Register Transfer Language (RTL)


	
class gcc.Rtl

	A wrapper around GCC’s struct rtx_def type: an expression within GCC’s
Register Transfer Language


	
loc

	The gcc.Location of this expression, or None






	
operands

	The operands of this expression, as a tuple.  The precise type of the
operands will vary by subclass.









There are numerous subclasses.  However, this part of the API is much less
polished than the rest of the plugin.









          

      

      

    

  

    
      
          
            
  
Release Notes



	0.16

	0.15

	0.14

	0.13
	Changes to the GCC Python Plugin
	GCC 4.9 compatibility

	Other fixes





	Improvements to gcc-with-cpychecker
	Other improvements





	Contributors





	0.12
	Changes to the GCC Python Plugin
	GCC 4.8 compatibility

	gcc-c-api

	Link-Time Optimization support

	API improvements

	Other fixes





	Internal improvements to gcc-with-cpychecker





	0.11
	Changes to the GCC Python Plugin

	Internal improvements to gcc-with-cpychecker





	0.10
	Changes to the GCC Python Plugin

	Improvements to gcc-with-cpychecker
	Mass recompile of Fedora 17’s Python extension code

	Pyscopg support

	Experimental new error visualization

	C++ support

	Coverage of the CPython API









	0.9
	Changes to the GCC Python Plugin

	Improvements to gcc-with-cpychecker
	Usage of deallocated memory

	Coverage of the CPython API









	0.8
	Changes to the GCC Python Plugin
	Initial C++ support

	Unconditional warnings





	Improvements to gcc-with-cpychecker
	Verification of PyMethodDef tables

	Coverage of the CPython API

	Bug fixes









	0.7
	Changes to the GCC Python Plugin

	Improvements to “cpychecker”
	Major rewrite of reference-count tracking

	Function calls with NULL-pointer arguments

	Dereferences of uninitialized pointers

	Error-reporting improvements

	Signal:noise ratio improvements

	Coverage of the CPython API

	Other user-visible improvments

	Internal improvements

















          

      

      

    

  

    
      
          
            
  
0.16

This releases adds support for gcc 7 and gcc 8  (along with continued
support for gcc 4.6, 4.7, 4.8, 4.9, 5 and 6).

The upstream location for the plugin has moved from fedorahosted.org
to https://github.com/davidmalcolm/gcc-python-plugin

Additionally, this release contains the following improvements:


	add gcc.RichLocation for GCC 6 onwards


	gcc.Location


	add caret, start,
finish attributes for GCC 7 onwards


	add gcc.Location.offset_column() method












          

      

      

    

  

    
      
          
            
  
0.15

This releases adds support for gcc 6  (along with continued
support for gcc 4.6, 4.7, 4.8, 4.9 and 5).

Additionally, this release contains the following improvements
(contributed by Tom Tromey; thanks Tom):



	document gcc.PLUGIN_FINISH_TYPE


	document gcc.EnumeralType; add ‘values’ attribute


	add unqualified_equivalent to gcc.Type subclasses


	preserve qualifiers when adding more qualifiers


	fix include for gcc 4.9.2


	handle variadic function types











          

      

      

    

  

    
      
          
            
  
0.14

This releases adds support for gcc 5  (along with continued
support for gcc 4.6, 4.7, 4.8 and 4.9).





          

      

      

    

  

    
      
          
            
  
0.13

The major features in this release are:



	gcc 4.9 compatibility


	a major revamping to the HTML output from gcc-with-cpychecker







New dependency: lxml.   The new HTML output format uses lxml
internally.


Changes to the GCC Python Plugin


GCC 4.9 compatibility

This release of the plugin adds support for gcc 4.9 (along with continued
support for gcc 4.6, 4.7 and gcc 4.8).

Building against 4.9 requires a GCC 4.9 with the fix for
GCC bug 63410 [https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63410] applied.




Other fixes


	fixed a build-time incompatibility with Python 3.3.0


	various internal bug fixes:


	bug in garbage-collector integration (https://bugzilla.redhat.com/show_bug.cgi?id=864314)


	the test suite is now parallelized (using multiprocessing)






	improvements to Makefile


	improvements to documentation


	add gcc.Location.in_system_header attribute









Improvements to gcc-with-cpychecker

The major improvement to gcc-with-cpychecker is a big
revamp of the output.

A new “v2” HTML report is available, written to SOURCE_NAME.v2.html
e.g. demo.c.v2.html:


[image: screenshot of the new kind of HTML report]


The new HTML report is easier to read in the presence of complicated
control flow.  It also include links to the API documentation for
calls made to the CPython API.

For both old-style and new-style reports, the wording of the messages has
been clarified:



	Reference-count tracking messages now largely eliminate the
0 + N where N >= gobbledegook, since this was confusing to
everyone (including me).  Instead, error reports
talk about references as owned vs borrowed references e.g.


	“refs: 1 owned”


	“refs: 0 owned 1 borrowed”




resorting to ranges:

refs: 0 owned + B borrowed where 1 <= B <= 0x80000000





only where necessary.



	Reports now add memory leak: and future use-after-free:
prefixes where appropriate, to better indicate the issue.


	Objects are referred to more in terms the user is likely to
understand e.g. *dictA rather than PyDictObject.







The checker also reports better source locations in its messages
e.g. in the presence of multiple return statements
(https://fedorahosted.org/gcc-python-plugin/ticket/58).


Other improvements


	Add a new test script: tests/examples/find-global-state, showing
examples of finding global state in the code being compiled.


	handle PySequence_DelItem()


	fix bug in handling of PyRun_SimpleStringFlags()


	fix issue with handling of PyArg_ParseTuple()
(https://fedorahosted.org/gcc-python-plugin/ticket/50)


	although we don’t model the internals of C++ exceptions, fix things so
we don’t crash with a traceback in the absense of -fno-exceptions
(https://fedorahosted.org/gcc-python-plugin/ticket/51)









Contributors

Thanks to Buck Golemon, Denis Efremov, Philip Herron, and Tom Tromey for
their contributions to this release.







          

      

      

    

  

    
      
          
            
  
0.12


Changes to the GCC Python Plugin


GCC 4.8 compatibility

This release of the plugin adds support for gcc 4.8 (along with continued
support for gcc 4.7 and gcc 4.6).




gcc-c-api

The source tree contains a new component: gcc-c-api.  This provides a
wrapper library libgcc-c-api.so that hides much of the details of GCC’s
internals (such as the binary layout of structures, and the differences
between GCC 4.6 through 4.8).

I plan for this to eventually be its own project, aiming at providing
a stable API and ABI for working with GCC, once it has proven itself in
the context of the python plugin.

The API provides an XML description of itself, which should greatly simplify
the job of generating bindings for accessing GCC internals from other
languages.




Link-Time Optimization support

The plugin can now be used with GCC’s Link-Time Optimization feature (LTO),
allowing whole-program visualizations and analysis.

For example, you can rendering a whole-program “supergraph” of control flow
graphs using this invocation:

$ ./gcc-with-python \
  examples/show-lto-supergraph.py \
  -flto \
  -flto-partition=none \
  tests/examples/lto/input-*.c





which will render a bitmap of the supergraph like this:



[image: image of a supergraph]








API improvements

Sane repr() implementations have been added to the following classes:
gcc.CaseLabelExpr
gcc.GimpleLabel
gcc.BasicBlock
gcc.SsaName
gcc.ArrayRef
gcc.ComponentRef
gcc.PointerType
gcc.IntegerType
gcc.Location

gcc.Location instances can now be compared and sorted.  They
are ordered alphabetically by file, then by line number, then by column)




Other fixes


	the Makefile has a “make install” target (at last)


	prevent forkbomb when running with CC=gcc-with-cpychecker


	fixed memory leak within gcc.Gimple.walk_tree()


	ensure that the result of gcc.Cfg.basic_blocks
can’t contain any None items (which used to sometimes happen when
certain optimizations had occurred).


	run-test-suite.py now has a –show option, giving more verbose
information on what the test suite is doing


	fix hashing and equality for gcc.Function and
gcc.Gimple


	fix gcc.IntegerCst.__hash__() and ensure it compares sanely
against int


	ensure that equivalent gcc.ComponentRef objects have the
same hash and are equal


	ensure there is a unique gcc.CallgraphEdge for each underlying edge, and
a unique gcc.Cfg for each underlying control flow graph


	add a “label” attribute to gcc.GimpleLabel


	add gcc.GCC_VERSION









Internal improvements to gcc-with-cpychecker


	fix exception on pointer comparisons


	fix exception on int-to-float casts


	fix traceback when analyzing a callsite that discards the LHS when an Outcome.returns() a value


	fix two different exceptions when casting an integer value to a pointer


	add example of refcounting bugs to “make demo”


	fix a traceback seen on bogus uses of Py_XDECREF()










          

      

      

    

  

    
      
          
            
  
0.11


Changes to the GCC Python Plugin

The main change in this release is support for compiling the plugin with a
C++ compiler.  Recent versions of GCC 4.7 are now built with C++ rather than
C, meaning that plugins must also be built with C++ (since all of GCC’s
internal symbols are name-mangled).  This release fixes the plugin’s
Makefile so that it autodetects whether the plugin needs to be built with a
C or C++ compiler and (I hope) does the right thing automatically.  I’ve also
made the necessary changes to the C source code of the plugin so that it is
compilable as either language.

This should enable the plugin to now be usable with recent builds of gcc
4.7.* (along with gcc 4.6).

The plugin doesn’t yet support gcc 4.8 prereleases.

Other fixes:



	there is now a unique gcc.Edge wrapper for each underlying
edge in GCC’s control flow graphs, rather than the old erroneous
behavior of having multiple identical duplicate wrappers.


	fixed missing documentation for gcc.SsaName, and
gcc.Edge’s true_value and false_value flags










Internal improvements to gcc-with-cpychecker

The CPython static analysis code shipped with the plugin contains a detailed
description of the behavior of the
CPython API [http://docs.python.org/c-api/] (e.g. which arguments will
lead to a segfault if NULL, and why; the possible outcomes of a call and
their impact on reference-counts; etc).

However, these descriptions were tightly bound to implementation details of
the checker.

This release introduces a new internal API to the analyzer for describing
the possible behaviors of CPython API entrypoints, in an attempt to decouple
these descriptions from the checker, and ports many of the descriptions to
using it.

These changes shouldn’t be visible to users of the checker, but should make
future maintenance much easier.







          

      

      

    

  

    
      
          
            
  
0.10

Thanks to Buck Golemon, Daniele Varrazzo, David Narvaez, Eevee, Jason Mueller,
Kevin Pyle, Matt Rice and Tom Tromey for their contributions to this release.


Changes to the GCC Python Plugin


	The plugin can now be used with Python 3.3 (fixing Unicode issues and
dict-ordering assumptions).


	The plugin now exposes inline assembler to Python scripts via
gcc.GimpleAsm.


	There is a new gccutils.sorted_callgraph() function to get the callgraph in
topologically-sorted order.


	The test suite has been reworked to fix issues with checkouts on OS X
case-insensitive filesystems.


	C++ support: support for locating the global namespace (aka “::”), for locating
declarations and child namespaces within a namespace, and aliases.


	gcc.Declaration now has an is_builtin attribute


	Numerous improvements to the plugin’s Makefile







Improvements to gcc-with-cpychecker


	By default, the refcount checker is now only run on code that includes
<Python.h> (implemented by checking if the “PyObject” typedef exists).

This greatly speeds up compilation of large projects for which the Python
extension modules are only a small subset of the source tree.



	Added some custom attributes for marking functions that set an exception,
either always, or when returning a negative value:

__attribute__((cpychecker_negative_result_sets_exception))
__attribute__((cpychecker_sets_exception))







	Improve descriptions of ranges: rather than emitting descriptions with the rather
vague “value”, such as:

when considering range: 1 <= value <= 0x7fffffff





instead try to embed a descriptive name for the value, such as:

when considering range: 1 <= n <= 0x7fffffff










Mass recompile of Fedora 17’s Python extension code

I ran the reference-count checker on all of the C/C++ Python extension modules
in Fedora 17 and reported hundreds of genuine problems [http://fedoraproject.org/wiki/Features/StaticAnalysisOfPythonRefcounts],
many of which have been fixed.

In the process of doing this I found and fixed many problems in the checker
itself.  For example:



	the checker now understand’s GCC’s  __builtin_expect, fixing various
false reports about dereferencing NULL pointers when running the checker
on Cython-generated code in python-lxml-2.3


	added descriptions of part of SWIG and Cython’s internal APIs to suppress
some false positives seen with SWIG and Cython-generated code.


	tweak the refcount rules to fix some false positives where the checker
erroneously considered the case of a deallocation by:

Py_DECREF(obj);





where “obj” provably had other references not owned by the function being
analyzed, and thus for the case where obj->ob_refcnt > 1 the deallocation
could not happen.








The plugin also now has a triaging script which can examine all of the errors
within a build and provide a report, showing all of them in prioritized
categories.

The source tree now contains helper scripts for conducting such a mass recompile.




Pyscopg support

Daniele Varrazzo used the checker extensively on
psycopg [http://initd.org/psycopg/], the popular Python interface
to PostgreSQL [http://www.postgresql.org/], and was able to find and fix
numerous subtle errors:



	https://fedorahosted.org/pipermail/gcc-python-plugin/2012-March/000229.html


	http://initd.org/psycopg/articles/2012/03/29/psycopg-245-released/










Experimental new error visualization

The checker can now dump its internal representation in JSON form, via a new
–dump-json option, and an experimental new renderer can generate HTML from
this.  An example can be seen here:

http://fedorapeople.org/~dmalcolm/gcc-python-plugin/2012-03-19/example/example.html

This is still a work-in-progress




C++ support

The checker is now able to run on C++ code: support has been added for methods,
references, “this”, destructors, the gcc.GimpleNop operation.




Coverage of the CPython API

The format code handling for Py_BuildValue was missing support for the
following codes:



	‘u’ and ‘u#’


	‘f’ and ‘d’


	‘D’


	‘c’







In addition, the handling for ‘s#’ and ‘z#’ had a bug in which it erroneously
expected an int* or Py_ssize_t*, rather than just a int or Py_ssize_t.

This release fixes these issues, and gives full coverage of all valid
format codes for Py_BuildValue in Python 2.

This release adds heuristics for the behavior of the following CPython API
entrypoints:



	PyCode_New


	PyCObject_FromVoidPtrAndDesc


	PyDict_Size


	PyErr_Clear


	PyEval_CallMethod


	Py_FatalError


	PyFile_SoftSpace, PyFile_WriteObject, and PyFile_WriteString


	PyFloat_AsDouble and PyFloat_FromDouble


	PyFrame_New


	Py_GetVersion


	PyImport_AddModule


	PyIter_Next


	PyNumber_Int, PyNumber_Remainder


	PyObject_CallObject, PyObject_GetAttr, PyObject_GetAttrString, PyObject_GetItem, PyObject_SetAttr, and PyObject_SetAttrString


	PyOS_snprintf


	PyString_InternFromString


	PySequence_Concat, PySequence_GetSlice, PySequence_SetItem, PySequence_Size


	PySys_GetObject


	PyTraceBack_Here


	PyTuple_GetItem


	PyUnicodeUCS4_DecodeUTF8


	PyWeakref_GetObject







along with various other bugfixes.









          

      

      

    

  

    
      
          
            
  
0.9


Changes to the GCC Python Plugin

The plugin now works with GCC 4.7 prereleases (ticket #21 [https://fedorahosted.org/gcc-python-plugin/ticket/21]).

The plugin is now integrated with GCC’s garbage collector: Python wrapper
objects keep their underlying GCC objects alive when GCC’s garbage collector
runs, preventing segfaults that could occur if the underlying objects were
swept away from under us
(ticket #1 [https://fedorahosted.org/gcc-python-plugin/ticket/1]).

It’s now possible to attach Python callbacks to more GCC events:
gcc.PLUGIN_FINISH, gcc.PLUGIN_GGC_START,
gcc.PLUGIN_GGC_MARKING, gcc.PLUGIN_GGC_FINISH,
gcc.PLUGIN_FINISH_DECL (gcc 4.7)

gcc.ArrayType has gained a “range” attribute, allowing scripts
to detect out-of-bounds conditions in array-handling.

A number of memory leaks were fixed: these were found by
running the plugin on itself [http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4642a564e03c9e2c8114bca206205ad9c8fbc308].

Various documentation improvements
(ticket #6 [https://fedorahosted.org/gcc-python-plugin/ticket/6],
ticket #31 [https://fedorahosted.org/gcc-python-plugin/ticket/31]).




Improvements to gcc-with-cpychecker

The gcc-with-cpychecker tool has received some deep
internal improvements in this release.

The logic for analyzing the outcome of comparisons has been rewritten for this
release, fixing some significant bugs that could lead to the analyzer
incorrectly deciding whether or not a block of code was reachable.

Similarly, the logic for detecting loops has been rewritten, elimininating a
bug in which the checker would prematurely stop analyzing loops with
complicated termination conditions, and not analyze the body of the loop.

Doing so extended the reach of the checker, and enabled it to find the memory
leaks referred to above.

In addition, the checker now emits more detailed information on the ranges of
possible values it’s considering when a comparison occurs against an unknown
value:

input.c: In function 'test':
input.c:41:5: warning: comparison against uninitialized data (item) at    input.c:41 [enabled by default]
input.c:34:12: note: when PyList_New() succeeds at:     result = PyList_New(len);
input.c:35:8: note: taking False path at:     if (!result) {
input.c:39:12: note: reaching:     for (i = 0; i < len; i++) {
input.c:39:5: note: when considering range: 1 <= value <= 0x7fffffff at:     for (i = 0; i < len; i++) {
input.c:39:5: note: taking True path at:     for (i = 0; i < len; i++) {
input.c:41:5: note: reaching:        if (!item) {





The checker should do a better job of identifying PyObject subclasses.
Previously it was treating any struct beginning with “ob_refcnt” and “ob_type”
as a Python object (with some tweaks for python 3 and debug builds).  It now
also covers structs that begin with a field that’s a PyObject (or subclass),
since these are likely to also be PyObject subclasses.


Usage of deallocated memory

Previously, the checker would warn about paths through a function that could
return a pointer to deallocated memory, or which tried to read through such
a pointer.  With this release, the checker will now also warn about paths
through a function in which a pointer to deallocated memory is passed to a
function.

For example, given this buggy code:

extern void some_function(PyObject *);

void
test(PyObject *self, PyObject *args)
{
    /* Create an object: */
    PyObject *tmp = PyLong_FromLong(0x1000);

    if (!tmp) {
        return;
    }

    /*
      Now decref the object.  Depending on what other references are owned
      on the object, it can reach a refcount of zero, and thus be deallocated:
    */
    Py_DECREF(tmp);

    /* BUG: the object being returned may have been deallocated */
    some_function(tmp);
}





the checker will emit this warning:

input.c: In function 'test':
input.c:45: warning: passing pointer to deallocated memory as argument 1 of function at input.c:45: memory deallocated at input.c:42 [enabled by default]
input.c:32: note: when PyLong_FromLong() succeeds at:     PyObject *tmp = PyLong_FromLong(0x1000);
input.c:34: note: taking False path at:     if (!tmp) {
input.c:42: note: reaching:     Py_DECREF(tmp);
input.c:42: note: when taking False path at:     Py_DECREF(tmp);
input.c:42: note: reaching:     Py_DECREF(tmp);
input.c:42: note: calling tp_dealloc on PyLongObject allocated at input.c:32 at:     Py_DECREF(tmp);
input.c:45: note: reaching:     foo(tmp);
input.c:30: note: graphical error report for function 'passing_dead_object_to_function' written out to 'input.c.test-refcount-errors.html'








Coverage of the CPython API

This release adds heuristics for the behavior of the following CPython API
entrypoints:



	PyString_Concat


	PyString_ConcatAndDel







along with various other bugfixes and documentation improvements.









          

      

      

    

  

    
      
          
            
  
0.8

Thanks to David Narvaez and Tom Tromey for their code contributions to this
release.


Changes to the GCC Python Plugin


Initial C++ support

This release adds the beginnings of C++ support: gcc.FunctionDecl
instances now have a “fullname” attribute, along with “is_public”,
“is_private”, “is_protected”, “is_static” booleans.

For example, given this code:


namespace Example {
    struct Coord {
        int x;
        int y;
    };

    class Widget {
    public:
        void set_location(const struct Coord& coord);
    };
};








set_location’s fullname is:

'void Example::Widget::set_location(const Example::Coord&)'





This is only present when the plugin is invoked from the C++ frontend
(cc1plus), gracefully handling the case when we’re invoked from other
language frontends.

Similarly, gcc.MethodType has gained an “argument_types” attribute.




Unconditional warnings

The gcc.warning() function in previous versions of the plugin required an
“option” argument, such as gcc.Option('-Wformat')

It’s now possible to emit an unconditional warning, by supplying None for
this argument, which is now the default value:

gcc.warning(func.start, 'this is an unconditional warning')





$ ./gcc-with-python script.py input.c
input.c:25:1: warning: this is an unconditional warning [enabled by default]





which will be an error if -Werror is supplied as a command-line argument to gcc:

$ ./gcc-with-python script.py -Werror input.c
input.c:25:1: error: this is an unconditional warning [-Werror]










Improvements to gcc-with-cpychecker

The “libcpychecker” Python code is a large example of
using the plugin: it extends GCC with code that tries to detect various bugs
in CPython extension modules.

As of this release, all of the errors emitted by the tool have been converted
to warnings.  This should make gcc-with-cpychecker more usable as a drop-in
replacement for gcc: the first source file with a refcounting error should
no longer terminate the build (unless the program uses -Werror, of
course).


Verification of PyMethodDef tables

This release adds checking of tables of PyMethodDef initialization values, used
by Python extension modules for binding C functions to Python methods.

The checker will verify that the signatures of the callbacks match the
flags, and that the such tables are NULL terminated:

input.c:48:22: warning: flags do not match callback signature for 'test' within PyMethodDef table
input.c:48:22: note: expected ml_meth callback of type "PyObject (fn)(someobject *, PyObject *)" (2 arguments)
input.c:48:22: note: actual type of underlying callback: struct PyObject * <Tc58> (struct PyObject *, struct PyObject *, struct PyObject *) (3 arguments)
input.c:48:22: note: see http://docs.python.org/c-api/structures.html#PyMethodDef








Coverage of the CPython API

When the checker warns about code that can erroneously pass NULL to
various CPython API entrypoints which are known to implicitly dereference
those arguments, the checker will now add an explanatory note about why it
is complaining.

For example:

input.c: In function 'test':
input.c:38:33: warning: calling PyString_AsString with NULL (gcc.VarDecl('repr_args')) as argument 1 at input.c:38
input.c:31:15: note: when PyObject_Repr() fails at:     repr_args = PyObject_Repr(args);
input.c:38:33: note: PyString_AsString() invokes Py_TYPE() on the pointer via the PyString_Check() macro, thus accessing (NULL)->ob_type
input.c:27:1: note: graphical error report for function 'test' written out to 'input.c.test-refcount-errors.html'





The checker will now verify the argument lists of invocations of
PyObject_CallFunctionObjArgs [http://docs.python.org/c-api/object.html#PyObject_CallFunctionObjArgs] and
PyObject_CallMethodObjArgs [http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs],
checking that all of the arguments are of the correct type
(PyObject* or subclasses), and that the list is NULL-terminated:

input.c: In function 'test':
input.c:33:5: warning: argument 2 had type char[12] * but was expecting a PyObject* (or subclass)
input.c:33:5: warning: arguments to PyObject_CallFunctionObjArgs were not NULL-terminated





This release also adds heuristics for the behavior of the following CPython API
entrypoints:



	PyArg_Parse


	PyCObject_{As,From}VoidPtr


	PyCallable_Check


	PyCapsule_GetPointer


	PyErr_{NewException,SetNone,WarnEx}


	PyEval_CallObjectWithKeywords


	PyEval_{Save,Restore}Thread (and thus the Py_{BEGIN,END}_ALLOW_THREADS
macros)


	PyList_{GetItem,Size}


	PyLong_FromLongLong


	PyMapping_Size


	PyModule_GetDict


	PyObject_AsFileDescriptor


	PyObject_Call{Function,FunctionObjArgs,MethodObjArgs}


	PyObject_Generic{Get,Set}Attr


	PyString_Size


	PyTuple_Pack


	PyUnicode_AsUTF8String


	Py_AtExit










Bug fixes


	gcc-with-cpychecker will now try harder on functions that are too
complicated to fully handle.  Previously, when a function was too
complicated for the reference-count tracker to fully analyze, it would give
up, performing no analysis.  The checker will now try to obtain at least
some subset of the list of all traces through the function, and analyze
those.  It will still note that the function was too complicated to fully
analyze.

Given that we do a depth-first traversal of the tree, and that “success”
transitions are typically visited before “failure” transitions, this means
that it should at least analyze the trace in which all functions calls
succeed, together with traces in which some of the later calls fail.



	the reference-count checker now correctly handles “static” PyObject* local
variables: a static PyObject * local preserves its value from call to call,
and can thus permanently own a reference.

Fixes a false-positive seen in psycopg2-2.4.2
(psycopg/psycopgmodule.c:psyco_GetDecimalType)
where the refcount checker erroneously reported that a reference was leaked.



	the checker for Py_BuildValue(“O”) (and “S” and “N”) was being too strict,
requiring a (PyObject*).  Although it’s not explicitly documented, it’s
clear that these can also accept pointers to any PyObject subclass.

Fixes a false positive seen when running gcc-with-cpychecker on
coverage-3.5.1b1.tar.gz, in which coverage/tracer.c:Tracer_trace passes a
PyFrameObject* as an argument to such a call.



	the reference-count checker now correctly suppresses reports about “leaks”
for traces that call a function that never return (such as abort()).

Fixes a false positive seen in rpm-4.9.1.2 in a handler for fatal errors:
(in python/rpmts-py.c:die) where the checker erroneously reported that a
reference was leaked.



	tp_iternext callbacks are allowed to return NULL without setting an
exception.  The reference-count checker will now notice if a function is
used in such a role, and suppress warnings about such behavior.


	fixed various Python tracebacks (tickets
#14 [https://fedorahosted.org/gcc-python-plugin/ticket/14],
#19 [https://fedorahosted.org/gcc-python-plugin/ticket/19],
#20 [https://fedorahosted.org/gcc-python-plugin/ticket/20],
#22 [https://fedorahosted.org/gcc-python-plugin/ticket/22],
#23 [https://fedorahosted.org/gcc-python-plugin/ticket/23],
#24 [https://fedorahosted.org/gcc-python-plugin/ticket/24],
#25 [https://fedorahosted.org/gcc-python-plugin/ticket/25])


	various other fixes












          

      

      

    

  

    
      
          
            
  
0.7

This is a major update to the GCC Python plugin.

The main example script, cpychecker, has seen numerous improvements, and has
now detected many reference-counting bugs in real-world CPython extension code.
The usability and signal:noise ratio is greatly improved over previous releases.


Changes to the GCC Python Plugin

It’s now possible to create custom GCC attributes from Python, allowing you to
add custom high-level annotation to a C API, and to write scripts that will
verify these properties.  It’s also possible to inject preprocessor macros
from Python.  Taken together, this allows code like this:


#if defined(WITH_ATTRIBUTE_CLAIMS_MUTEX)
 #define CLAIMS_MUTEX(x) __attribute__((claims_mutex(x)))
#else
 #define CLAIMS_MUTEX(x)
#endif

#if defined(WITH_ATTRIBUTE_RELEASES_MUTEX)
 #define RELEASES_MUTEX(x) __attribute__((releases_mutex(x)))
#else
 #define RELEASES_MUTEX(x)
#endif


/* Function declarations with custom attributes: */
extern void some_function(void)
    CLAIMS_MUTEX("io");

extern void some_other_function(void)
    RELEASES_MUTEX("io");

extern void yet_another_function(void)
    CLAIMS_MUTEX("db")
    CLAIMS_MUTEX("io")
    RELEASES_MUTEX("io");








Other improvements:



	gcc’s debug dump facilities are now exposed via a Python API


	it’s now possible to run Python commands in GCC (rather than scripts) using
-fplugin-arg-python-command


	improvements to the “source location” when reporting on an unhandled
Python exception.  Amongst other tweaks, it’s now possible for a script to
override this, which the cpychecker uses, so that if it can’t handle a
particular line of C code, the GCC error report gives that location before
reporting the Python traceback (making debugging much easier).


	“switch” statements are now properly wrapped at the Python level
(gcc.GimpleSwitch)


	C bitfields are now wrapped at the Python level


	gcc.Type instances now have a “sizeof” attribute, and an “attributes”
attribute.


	added a gcc.Gimple.walk_tree method, to make it easy to visit all nodes
relating to a statement


	added a new example: spell-checking all string literals in code










Improvements to “cpychecker”

The “libcpychecker” Python code is a large example of using the plugin: it
extends GCC with code that tries to detect various bugs in CPython extension
modules.

The cpychecker analyzes the paths that can be followed through a C function,
and verifies various properties, including reference-count handling.

As of this release, the pass has found many reference-counting bugs in
real-world code.  You can see a list of the bugs that it has detected at:

http://gcc-python-plugin.readthedocs.org/en/latest/success.html

The checker is now almost capable of fully handling the C code within the
gcc python plugin itself.

The checker has also been reorganized to (I hope) make it easy to add checking
for other libraries and APIs.


Major rewrite of reference-count tracking

I’ve rewritten the internals of how reference counts are tracked: the code now
makes a distinction betweeen all of the reference that can be analysed within a
single function, versus all of the other references that may exist in the rest
of the program.

This allows us to know for an object e.g. that the function doesn’t directly
own any references, but that the reference count is still > 0 (a “borrowed
reference”), as compared to the case where the function owns a reference, but
we don’t know of any in the rest of the program (this is typical when receiving
a “new reference” e.g. from a function call to a constructor).

Within the reference-count checker, we now look for memory locations that
store references to objects.   If those locations not on the stack, then the
references they store are now assumed to legally count towards the ob_refcnt
that the function “owns”.  This is needed in order to correctly handle e.g.
the PyList_SET_ITEM() macro, which directly writes to the list’s ob_item field,
“stealing” a reference: we can detect these references, and count them towards
the ob_refcnt value.

The checker can now detect types that look like PyObject subclasses at the C
level (by looking at the top-most fields), and uses this information in various
places.

The checker now exposes custom GCC attributes allowing you to mark APIs that
have non-standard reference-handling behavior:

PyObject *foo(void)
  CPYCHECKER_RETURNS_BORROWED_REF;

extern void bar(int i, PyObject *obj, int j, PyObject *other)
  CPYCHECKER_STEALS_REFERENCE_TO_ARG(2)
  CPYCHECKER_STEALS_REFERENCE_TO_ARG(4);





It also exposes an attribute allowing you to the run-time and compile-time
type information for a Python extension class:

/* Define some PyObject subclass, as both a struct and a typedef */
struct OurObjectStruct {
    PyObject_HEAD
    /* other fields */
};
typedef struct OurObjectStruct OurExtensionObject;

/*
  Declare the PyTypeObject, using the custom attribute to associate it with
  the typedef above:
*/
extern PyTypeObject UserDefinedExtension_Type
  CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF("OurExtensionObject");








Function calls with NULL-pointer arguments

The checker knows about various CPython API hooks that will crash on NULL
pointer arguments, and will emit warnings when it can determine a path through
the code that will lead to a definite call with a NULL value.




Dereferences of uninitialized pointers

The checker will now complain about paths through a function for which it can
prove that an uninitialized pointer will be dereferenced.




Error-reporting improvements

The error-reporting machinery can generate HTML reports: see e.g.:
http://readthedocs.org/docs/gcc-python-plugin/en/latest/cpychecker.html#reference-count-checking
and http://dmalcolm.livejournal.com/6560.html

The checker can now annotate its HTML (and textual) reports with information
showing how some pertinent aspect of the program’s state changes during a
particular path through a function.

For example, when reporting on reference-counting errors, the HTML report
showing the flow through the function will now display all changes to an object’s
ob_refcnt, together with all changes to what the value ought to be (e.g. due to
pointers being stored to persistent memory locations):



[image: screenshot of the HTML report]





Similarly, when reporting on exception-handling errors, it now displays the
“history” of changes to the thread-local exception state.

There’s also a debug mode which dumps _everything_ that changes within the
report, which is helpful for debugging the checker itself.

The error report will attempt to use the most representative name for a leaked
object, using a variable name or a C expression fragment as appropriate.

The checker will attempt to combine duplicate error reports, so that it will
only emit one error for all of the various traces of execution that exhibit a
particular reference-counting bug.

Finally, when writing out an HTML report, the path to the HTML is now noted
within gcc’s regular stderr messages.




Signal:noise ratio improvements

To suppress various false-positives that I commonly ran into on real code, the
checker now makes certain assumptions:



	When encountering an unknown function that returns a PyObject*, the
checker assumes that it will either return a new reference to a sane
object (with a sane ob_type), or return NULL and set the thread-local
exception state.


	The checker assumes that a PyObject* argument to a function is non-NULL
and has a >0 refcount, and has a sane ob_type (e.g. with a sane refcount
and tp_dealloc)


	When dereferencing a pointer that it has no knowledge about (e.g. a
pointer field in a structure), the checker now assumes that it’s
non-NULL, unless it knows that NULL is a definite possibility i.e. it
optimistically assumes that you know what you’re doing (this could be
turned into a command-line option).  Note that for the cases where we
know that the pointer can _definitely_ be NULL, an error will still be
reported (e.g. when considering the various possible return values for a
function known to be able to return NULL).










Coverage of the CPython API

I’ve gone through much of the CPython API, “teaching” the checker about the
reference-count semantics of each API call (and which calls will crash if fed a
NULL pointer).  This involves writing a simple fragment of Python code for
each function, which describes the various different affects that the call can
have on the internal state within the callee.


	This release adds support for calls to the following:

	
	_PyObject_New


	Py_{Initialize|Finalize}


	Py_InitModule4


	PyArg_ParseTuple[AndKeywords], and the PY_SSIZE_T_CLEAN variants (only
partial coverage so far: “O”, “O!” should work though)


	PyArg_UnpackTuple


	PyBool_FromLong


	Py_BuildValue and the PY_SSIZE_T_CLEAN variant (only partial coverage so
far)


	PyDict_{GetItem,GetItemString,New,SetItem,SetItemString}


	PyErr_{Format,NoMemory,Occurred,Print,PrintEx,SetFromErrno[WithFilename],
SetObject,SetString}


	PyEval_InitThreads


	PyGILState_{Ensure,Release}


	PyImport_{AppendInittab,ImportModule}


	PyInt_{AsLong,FromLong}


	PyList_Append


	PyLong_{FromString,FromVoidPtr}


	PyMem_{Malloc,Free}


	PyModule_Add{IntConstant,Object,StringConstant}


	PyObject_{Call,CallMethod,HasAttrString,IsTrue,Repr,Str}


	PyRun_{SimpleFileExFlags,SimpleStringFlags}


	PySequence_GetItem


	PyString_{AsString,FromFormat,FromString,FromStringAndSize}


	PyStructSequence_{InitType,New}


	PySys_SetObject


	PyTuple_{New,SetItem,Size}


	PyType_{IsSubtype,Ready}








I’ve been targetting those API entrypoints that I use myself in the plugin;
this is one area which is particularly amenable to patching, for anyone who
wants to get involved.   I’ve also added a (disabled) hook that complains
about Python API entrypoints that weren’t explicitly handled, to make it easy
to find gaps in our coverage of the CPython API.




Other user-visible improvments



	There’s now a “gcc-with-cpychecker” harness, to make it easier to invoke
GCC with the cpychecker code from e.g. Makefiles


	The checker now respects __attribute((nonnull)) on function arguments
when detecting NULL pointers


	Handle functions that don’t return (e.g. “exit”)


	Number the unknown heap regions, to clarify things when there’s more than
one










Internal improvements



	The cpychecker now has some protection against combinatorial explosion
for functions that have very large numbers of possible routes through
them.  For such functions, the checker will emit a note on stderr and
not attempt to find reference-counting bugs in the function.


	The cpychecker is now done as a custom pass (rather than by wiring up a
callback associated with every pass)


	I’ve tuned the logging within the checker, eliminating some CPU/memory
consumption issues seen when analysing complicated C code.  In particular,
the log message arguments are now only expanded when logging is enabled
(previously this was happening all the time).


	Lots of other internal improvements and bug fixes (e.g. handling of arrays
vs pointers, static vs auto local variables, add missing handlers for
various kinds of C expression, lots of work on improving the readability of
error messages)















          

      

      

    

  

    
      
          
            
  
Appendices

The following contain tables of reference material that may be useful
when writing scripts.



	All of GCC’s passes
	The lowering passes

	The “small IPA” passes

	The “regular IPA” passes

	Passes generating Link-Time Optimization data

	The “all other passes” catch-all





	gcc.Tree operators by symbol









          

      

      

    

  

    
      
          
            
  
All of GCC’s passes

This diagram shows the various GCC optimization passes, arranged vertically,
showing child passes via indentation.

The lifetime of the various properties that they maintain is shown, giving
the pass that initially creates the data (if any), the pass that destroys it
(if any), and each pass that requires a particular property (based on the
PROP_* flags).

[image: _images/passes.svg]These tables contain the same information.  The diagram and tables were
autogenerated, using GCC 4.6.0


The lowering passes










	Pass Name

	Required properties

	Provided properties

	Destroyed properties





	*warn_unused_result

	gimple_any

	
	


	*diagnose_omp_blocks

	gimple_any

	
	


	mudflap1

	gimple_any

	
	


	omplower

	gimple_any

	gimple_lomp

	


	lower

	gimple_any

	gimple_lcf

	


	ehopt

	gimple_lcf

	
	


	eh

	gimple_lcf

	gimple_leh

	


	cfg

	gimple_leh

	cfg

	


	*warn_function_return

	cfg

	
	


	*build_cgraph_edges

	cfg

	
	











The “small IPA” passes










	Pass Name

	Required properties

	Provided properties

	Destroyed properties





	*free_lang_data

	gimple_any, gimple_lcf, gimple_leh, cfg

	
	


	visibility

	
	
	


	early_local_cleanups

	
	
	


	> *free_cfg_annotations

	cfg

	
	


	> *init_datastructures

	cfg

	
	


	> ompexp

	gimple_any

	
	


	> *referenced_vars

	gimple_leh, cfg

	referenced_vars

	


	> ssa

	cfg, referenced_vars

	ssa

	


	> veclower

	cfg

	
	


	> *early_warn_uninitialized

	ssa

	
	


	> *rebuild_cgraph_edges

	cfg

	
	


	> inline_param

	
	
	


	> einline

	
	
	


	> early_optimizations

	
	
	


	> > *remove_cgraph_callee_edges

	
	
	


	> > copyrename

	cfg, ssa

	
	


	> > ccp

	cfg, ssa

	
	


	> > forwprop

	cfg, ssa

	
	


	> > ealias

	cfg, ssa

	
	


	> > esra

	cfg, ssa

	
	


	> > copyprop

	cfg, ssa

	
	


	> > mergephi

	cfg, ssa

	
	


	> > cddce

	cfg, ssa

	
	


	> > eipa_sra

	
	
	


	> > tailr

	cfg, ssa

	
	


	> > switchconv

	cfg, ssa

	
	


	> > ehcleanup

	gimple_lcf

	
	


	> > profile

	cfg

	
	


	> > local-pure-const

	
	
	


	> > fnsplit

	cfg

	
	


	> release_ssa

	ssa

	
	


	> *rebuild_cgraph_edges

	cfg

	
	


	> inline_param

	
	
	


	tree_profile_ipa

	
	
	


	> feedback_fnsplit

	cfg

	
	


	increase_alignment

	
	
	


	matrix-reorg

	
	
	


	emutls

	cfg, ssa

	
	











The “regular IPA” passes










	Pass Name

	Required properties

	Provided properties

	Destroyed properties





	whole-program

	gimple_any, gimple_lcf, gimple_leh, cfg

	
	


	ipa-profile

	
	
	


	cp

	
	
	


	cdtor

	
	
	


	inline

	
	
	


	pure-const

	
	
	


	static-var

	
	
	


	type-escape-var

	
	
	


	pta

	
	
	


	ipa_struct_reorg

	
	
	











Passes generating Link-Time Optimization data










	Pass Name

	Required properties

	Provided properties

	Destroyed properties





	lto_gimple_out

	gimple_any, gimple_lcf, gimple_leh, cfg

	
	


	lto_decls_out

	
	
	











The “all other passes” catch-all










	Pass Name

	Required properties

	Provided properties

	Destroyed properties





	ehdisp

	gimple_any, gimple_lcf, gimple_leh, cfg

	
	


	*all_optimizations

	
	
	


	> *remove_cgraph_callee_edges

	
	
	


	> *strip_predict_hints

	cfg

	
	


	> copyrename

	cfg, ssa

	
	


	> cunrolli

	cfg, ssa

	
	


	> ccp

	cfg, ssa

	
	


	> forwprop

	cfg, ssa

	
	


	> cdce

	cfg, ssa

	
	


	> alias

	cfg, ssa

	
	


	> retslot

	ssa

	
	


	> phiprop

	cfg, ssa

	
	


	> fre

	cfg, ssa

	
	


	> copyprop

	cfg, ssa

	
	


	> mergephi

	cfg, ssa

	
	


	> vrp

	ssa

	
	


	> dce

	cfg, ssa

	
	


	> cselim

	cfg, ssa

	
	


	> ifcombine

	cfg, ssa

	
	


	> phiopt

	cfg, ssa

	
	


	> tailr

	cfg, ssa

	
	


	> ch

	cfg, ssa

	
	


	> stdarg

	cfg, ssa

	
	


	> cplxlower

	ssa

	gimple_lcx

	


	> sra

	cfg, ssa

	
	


	> copyrename

	cfg, ssa

	
	


	> dom

	cfg, ssa

	
	


	> phicprop

	cfg, ssa

	
	


	> dse

	cfg, ssa

	
	


	> reassoc

	cfg, ssa

	
	


	> dce

	cfg, ssa

	
	


	> forwprop

	cfg, ssa

	
	


	> phiopt

	cfg, ssa

	
	


	> objsz

	cfg, ssa

	
	


	> ccp

	cfg, ssa

	
	


	> copyprop

	cfg, ssa

	
	


	> sincos

	ssa

	
	


	> bswap

	ssa

	
	


	> crited

	cfg

	no_crit_edges

	


	> pre

	cfg, ssa, no_crit_edges

	
	


	> sink

	cfg, ssa, no_crit_edges

	
	


	> loop

	cfg

	
	


	> > loopinit

	cfg

	
	


	> > lim

	cfg

	
	


	> > copyprop

	cfg, ssa

	
	


	> > dceloop

	cfg, ssa

	
	


	> > unswitch

	cfg

	
	


	> > sccp

	cfg, ssa

	
	


	> > *record_bounds

	cfg, ssa

	
	


	> > ckdd

	cfg, ssa

	
	


	> > ldist

	cfg, ssa

	
	


	> > copyprop

	cfg, ssa

	
	


	> > graphite0

	cfg, ssa

	
	


	> > > graphite

	cfg, ssa

	
	


	> > > lim

	cfg

	
	


	> > > copyprop

	cfg, ssa

	
	


	> > > dceloop

	cfg, ssa

	
	


	> > ivcanon

	cfg, ssa

	
	


	> > ifcvt

	cfg, ssa

	
	


	> > vect

	cfg, ssa

	
	


	> > > veclower2

	cfg

	
	


	> > > dceloop

	cfg, ssa

	
	


	> > pcom

	cfg

	
	


	> > cunroll

	cfg, ssa

	
	


	> > slp

	cfg, ssa

	
	


	> > parloops

	cfg, ssa

	
	


	> > aprefetch

	cfg, ssa

	
	


	> > ivopts

	cfg, ssa

	
	


	> > loopdone

	cfg

	
	


	> recip

	ssa

	
	


	> reassoc

	cfg, ssa

	
	


	> vrp

	ssa

	
	


	> dom

	cfg, ssa

	
	


	> phicprop

	cfg, ssa

	
	


	> cddce

	cfg, ssa

	
	


	> tracer

	
	
	


	> uninit

	ssa

	
	


	> dse

	cfg, ssa

	
	


	> forwprop

	cfg, ssa

	
	


	> phiopt

	cfg, ssa

	
	


	> fab

	cfg, ssa

	
	


	> widening_mul

	ssa

	
	


	> tailc

	cfg, ssa

	
	


	> copyrename

	cfg, ssa

	
	


	> uncprop

	cfg, ssa

	
	


	> local-pure-const

	
	
	


	cplxlower0

	cfg

	gimple_lcx

	


	ehcleanup

	gimple_lcf

	
	


	resx

	gimple_lcf

	
	


	nrv

	cfg, ssa

	
	


	mudflap2

	gimple_leh, cfg, ssa

	
	


	optimized

	cfg

	
	


	*warn_function_noreturn

	cfg

	
	


	expand

	gimple_leh, cfg, ssa, gimple_lcx

	rtl

	gimple_any, gimple_lcf, gimple_leh, ssa, gimple_lomp



	*rest_of_compilation

	rtl

	
	


	> *init_function

	
	
	


	> sibling

	
	
	


	> rtl eh

	
	
	


	> initvals

	
	
	


	> unshare

	
	
	


	> vregs

	
	
	


	> into_cfglayout

	
	cfglayout

	


	> jump

	
	
	


	> subreg1

	
	
	


	> dfinit

	
	
	


	> cse1

	
	
	


	> fwprop1

	
	
	


	> cprop

	cfglayout

	
	


	> rtl pre

	cfglayout

	
	


	> hoist

	cfglayout

	
	


	> cprop

	cfglayout

	
	


	> store_motion

	cfglayout

	
	


	> cse_local

	
	
	


	> ce1

	
	
	


	> reginfo

	
	
	


	> loop2

	
	
	


	> > loop2_init

	
	
	


	> > loop2_invariant

	
	
	


	> > loop2_unswitch

	
	
	


	> > loop2_unroll

	
	
	


	> > loop2_doloop

	
	
	


	> > loop2_done

	
	
	


	> web

	
	
	


	> cprop

	cfglayout

	
	


	> cse2

	
	
	


	> dse1

	
	
	


	> fwprop2

	
	
	


	> auto_inc_dec

	
	
	


	> init-regs

	
	
	


	> ud dce

	
	
	


	> combine

	cfglayout

	
	


	> ce2

	
	
	


	> bbpart

	cfglayout

	
	


	> regmove

	
	
	


	> outof_cfglayout

	
	
	cfglayout



	> split1

	
	
	


	> subreg2

	
	
	


	> no-opt dfinit

	
	
	


	> *stack_ptr_mod

	
	
	


	> mode_sw

	
	
	


	> asmcons

	
	
	


	> sms

	
	
	


	> sched1

	
	
	


	> ira

	
	
	


	> *all-postreload

	rtl

	
	


	> > postreload

	
	
	


	> > gcse2

	
	
	


	> > split2

	
	
	


	> > zee

	
	
	


	> > cmpelim

	
	
	


	> > btl1

	
	
	


	> > pro_and_epilogue

	
	
	


	> > dse2

	
	
	


	> > csa

	
	
	


	> > peephole2

	
	
	


	> > ce3

	
	
	


	> > rnreg

	
	
	


	> > cprop_hardreg

	
	
	


	> > rtl dce

	
	
	


	> > bbro

	
	
	


	> > btl2

	
	
	


	> > *leaf_regs

	
	
	


	> > split4

	
	
	


	> > sched2

	
	
	


	> > *stack_regs

	
	
	


	> > > split3

	
	
	


	> > > stack

	
	
	


	> > alignments

	
	
	


	> > compgotos

	
	
	


	> > vartrack

	
	
	


	> > *free_cfg

	
	
	cfg



	> > mach

	
	
	


	> > barriers

	
	
	


	> > dbr

	
	
	


	> > split5

	
	
	


	> > eh_ranges

	
	
	


	> > shorten

	
	
	


	> > nothrow

	
	
	


	> > final

	
	
	


	> dfinish

	
	
	


	*clean_state

	
	
	rtl















          

      

      

    

  

    
      
          
            
  
gcc.Tree operators by symbol

The following shows the symbol used for each expression subclass in debug
dumps, as returned by the various get_symbol() class methods.

There are some duplicates (e.g. - is used for both gcc.MinusExpr
as an infix binary operator, and by gcc.NegateExpr as a prefixed
unary operator).








	Class

	get_symbol()





	gcc.AddrExpr

	&



	gcc.BitAndExpr

	&



	gcc.BitIorExpr

	|



	gcc.BitNotExpr

	~



	gcc.BitXorExpr

	^



	gcc.CeilDivExpr

	/[cl]



	gcc.CeilModExpr

	%[cl]



	gcc.EqExpr

	==



	gcc.ExactDivExpr

	/[ex]



	gcc.FloorDivExpr

	/[fl]



	gcc.FloorModExpr

	%[fl]



	gcc.GeExpr

	>=



	gcc.GtExpr

	>



	gcc.IndirectRef

	*



	gcc.LeExpr

	<=



	gcc.LrotateExpr

	r<<



	gcc.LshiftExpr

	<<



	gcc.LtExpr

	<



	gcc.LtgtExpr

	<>



	gcc.MaxExpr

	max



	gcc.MinExpr

	min



	gcc.MinusExpr

	-



	gcc.ModifyExpr

	=



	gcc.MultExpr

	*



	gcc.NeExpr

	!=



	gcc.NegateExpr

	-



	gcc.OrderedExpr

	ord



	gcc.PlusExpr

	+



	gcc.PointerPlusExpr

	+



	gcc.PostdecrementExpr

	–



	gcc.PostincrementExpr

	++



	gcc.PredecrementExpr

	–



	gcc.PreincrementExpr

	++



	gcc.RdivExpr

	/



	gcc.ReducPlusExpr

	r+



	gcc.RoundDivExpr

	/[rd]



	gcc.RoundModExpr

	%[rd]



	gcc.RrotateExpr

	r>>



	gcc.RshiftExpr

	>>



	gcc.TruncDivExpr

	/



	gcc.TruncModExpr

	%



	gcc.TruthAndExpr

	&&



	gcc.TruthAndifExpr

	&&



	gcc.TruthNotExpr

	!



	gcc.TruthOrExpr

	||



	gcc.TruthOrifExpr

	||



	gcc.TruthXorExpr

	^



	gcc.UneqExpr

	u==



	gcc.UngeExpr

	u>=



	gcc.UngtExpr

	u>



	gcc.UnleExpr

	u<=



	gcc.UnltExpr

	u<



	gcc.UnorderedExpr

	unord



	gcc.VecLshiftExpr

	v<<



	gcc.VecRshiftExpr

	v>>



	gcc.WidenMultExpr

	w*



	gcc.WidenSumExpr

	w+













          

      

      

    

  

    
      
          
            

Index



 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 


Symbols


  	
      	
    --dump-json

      
        	gcc-with-cpychecker command line option


      


  

  	
      	
    --maxtrans <int>

      
        	gcc-with-cpychecker command line option


      


  





_


  	
      	__init__() (gcc.Location method)


  





A


  	
      	add_fixit_replace() (gcc.RichLocation method)


      	addr (gcc.Tree attribute)


      	alias_of (gcc.NamespaceDecl attribute)


      	args (gcc.GimpleCall attribute)

      
        	(gcc.GimplePhi attribute)


      


      	argument_types (gcc.FunctionType attribute)

      
        	(gcc.MethodType attribute)


      


  

  	
      	arguments (gcc.FunctionDecl attribute)


      	array (gcc.ArrayRef attribute)


      	ArrayRangeRef (built-in class)


      	AttrAddrExpr (built-in class)


      	attributes (gcc.Type attribute)


  





B


  	
      	basever (gcc.Version attribute)


      	basic_blocks (gcc.Cfg attribute)


  

  	
      	BitFieldRef (built-in class)


      	block (gcc.Gimple attribute)

      
        	(gcc.TranslationUnitDecl attribute)


      


  





C


  	
      	call_stmt (gcc.CallgraphEdge attribute)


      	callee (gcc.CallgraphEdge attribute)


      	callees (gcc.CallgraphNode attribute)


      	caller (gcc.CallgraphEdge attribute)


      	callers (gcc.CallgraphNode attribute)


      	callgraph_node (gcc.FunctionDecl attribute)


      	caret (gcc.Location attribute)


  

  	
      	cfg (gcc.Function attribute)


      	column (gcc.Location attribute)


      	complex (gcc.Edge attribute)


      	configuration_arguments (gcc.Version attribute)


      	const


      	const_equivalent


      	constant (gcc.Constant attribute)


      	current_value (gcc.Parameter attribute)


  





D


  	
      	datestamp (gcc.Version attribute)


      	debug() (gcc.Tree method)


      	decl (gcc.CallgraphNode attribute)

      
        	(gcc.Function attribute)


        	(gcc.Variable attribute)


      


      	declarations (gcc.NamespaceDecl attribute)


      	def_stmt (gcc.SsaName attribute)


  

  	
      	default_value (gcc.Parameter attribute)


      	dereference (gcc.ArrayType attribute)

      
        	(gcc.PointerType attribute)


        	(gcc.VectorType attribute)


      


      	dest (gcc.Edge attribute)


      	devphase (gcc.Version attribute)


      	dump_enabled (gcc.Pass attribute)


  





E


  	
      	end (gcc.Function attribute)


      	entry (gcc.Cfg attribute)


      	execute(), [1]


  

  	
      	exit (gcc.Cfg attribute)


      	exprcode (gcc.GimpleAssign attribute), [1]

      
        	(gcc.GimpleCond attribute)


      


      	exprtype (gcc.Gimple attribute)


  





F


  	
      	false_label (gcc.GimpleCond attribute)


      	false_value (gcc.Edge attribute)


      	field (gcc.ComponentRef attribute)


      	fields (gcc.RecordType attribute)


      	file (gcc.Location attribute)


  

  	
      	finish (gcc.Location attribute)


      	fn (gcc.GimpleCall attribute)


      	fndecl (gcc.GimpleCall attribute)


      	fullname (gcc.FunctionDecl attribute)


      	funcdef_no (gcc.Function attribute)


      	function (gcc.FunctionDecl attribute)


  





G


  	
      	gate(), [1]


      	
    gcc-with-cpychecker command line option

      
        	--dump-json


        	--maxtrans <int>


      


      	gcc.argument_dict (built-in variable)


      	gcc.argument_tuple (built-in variable)


      	gcc.ArrayRef (built-in class)


      	gcc.ArrayType (built-in class)


      	gcc.BasicBlock (built-in class)


      	gcc.Binary (built-in class)


      	gcc.Binary.gcc.BitAndExpr (built-in class)


      	gcc.Binary.gcc.BitIorExpr (built-in class)


      	gcc.Binary.gcc.BitXorExpr (built-in class)


      	gcc.Binary.gcc.CeilDivExpr (built-in class)


      	gcc.Binary.gcc.CeilModExpr (built-in class)


      	gcc.Binary.gcc.CompareExpr (built-in class)


      	gcc.Binary.gcc.CompareGExpr (built-in class)


      	gcc.Binary.gcc.CompareLExpr (built-in class)


      	gcc.Binary.gcc.ComplexExpr (built-in class)


      	gcc.Binary.gcc.ExactDivExpr (built-in class)


      	gcc.Binary.gcc.FloorDivExpr (built-in class)


      	gcc.Binary.gcc.FloorModExpr (built-in class)


      	gcc.Binary.gcc.LrotateExpr (built-in class)


      	gcc.Binary.gcc.LshiftExpr (built-in class)


      	gcc.Binary.gcc.MaxExpr (built-in class)


      	gcc.Binary.gcc.MinExpr (built-in class)


      	gcc.Binary.gcc.MinusExpr (built-in class)


      	gcc.Binary.gcc.MinusNomodExpr (built-in class)


      	gcc.Binary.gcc.MultExpr (built-in class)


      	gcc.Binary.gcc.PlusExpr (built-in class)


      	gcc.Binary.gcc.PlusNomodExpr (built-in class)


      	gcc.Binary.gcc.PointerPlusExpr (built-in class)


      	gcc.Binary.gcc.RangeExpr (built-in class)


      	gcc.Binary.gcc.RdivExpr (built-in class)


      	gcc.Binary.gcc.RoundDivExpr (built-in class)


      	gcc.Binary.gcc.RoundModExpr (built-in class)


      	gcc.Binary.gcc.RrotateExpr (built-in class)


      	gcc.Binary.gcc.RshiftExpr (built-in class)


      	gcc.Binary.gcc.TruncDivExr (built-in class)


      	gcc.Binary.gcc.TruncModExpr (built-in class)


      	gcc.Binary.gcc.UrshiftExpr (built-in class)


      	gcc.Binary.gcc.VecExtractevenExpr (built-in class)


      	gcc.Binary.gcc.VecExtractoddExpr (built-in class)


      	gcc.Binary.gcc.VecInterleavehighExpr (built-in class)


      	gcc.Binary.gcc.VecInterleavelowExpr (built-in class)


      	gcc.Binary.gcc.VecLshiftExpr (built-in class)


      	gcc.Binary.gcc.VecPackFixTruncExpr (built-in class)


      	gcc.Binary.gcc.VecPackSatExpr (built-in class)


      	gcc.Binary.gcc.VecPackTruncExpr (built-in class)


      	gcc.Binary.gcc.VecRshiftExpr (built-in class)


      	gcc.Binary.gcc.WidenMultExpr (built-in class)


      	gcc.Binary.gcc.WidenMultHiExpr (built-in class)


      	gcc.Binary.gcc.WidenMultLoExpr (built-in class)


      	gcc.Binary.gcc.WidenSumExpr (built-in class)


      	gcc.Block (built-in class)


      	gcc.CallgraphEdge (built-in class)


      	gcc.CallgraphNode (built-in class)


      	gcc.CaseLabelExpr (built-in class)


      	gcc.Cfg (built-in class)


      	gcc.Comparison (built-in class)


      	gcc.Comparison.EqExpr (built-in class)


      	gcc.Comparison.GeExpr (built-in class)


      	gcc.Comparison.GtExpr (built-in class)


      	gcc.Comparison.LeExpr (built-in class)


      	gcc.Comparison.LtExpr (built-in class)


      	gcc.Comparison.LtgtExpr (built-in class)


      	gcc.Comparison.NeExpr (built-in class)


      	gcc.Comparison.OrderedExpr (built-in class)


      	gcc.Comparison.UneqExpr (built-in class)


      	gcc.Comparison.UngeExpr (built-in class)


      	gcc.Comparison.UngtExpr (built-in class)


      	gcc.Comparison.UnleExpr (built-in class)


      	gcc.Comparison.UnltExpr (built-in class)


      	gcc.Comparison.UnorderedExpr (built-in class)


      	gcc.ComponentRef (built-in class)


      	gcc.Constant (built-in class)


      	gcc.Constant.ComplexCst (built-in class)


      	gcc.Constant.FixedCst (built-in class)


      	gcc.Constant.IntegerCst (built-in class)


      	gcc.Constant.PtrmemCst (built-in class)


      	gcc.Constant.RealCst (built-in class)


      	gcc.Constant.StringCst (built-in class)


      	gcc.Constant.VectorCst (built-in class)


      	gcc.Declaration (built-in class)


      	gcc.define_macro() (built-in function)


      	gcc.dump() (built-in function)


      	gcc.Edge (built-in class)


      	gcc.EnumeralType (built-in class)


      	gcc.error() (built-in function)


      	gcc.Expression (built-in class)


      	gcc.Expression.gcc.AddrExpr (built-in class)


      	gcc.Expression.gcc.AlignofExpr (built-in class)


      	gcc.Expression.gcc.ArrowExpr (built-in class)


      	gcc.Expression.gcc.AssertExpr (built-in class)


      	gcc.Expression.gcc.AtEncodeExpr (built-in class)


      	gcc.Expression.gcc.BindExpr (built-in class)


      	gcc.Expression.gcc.ClassReferenceExpr (built-in class)


      	gcc.Expression.gcc.CleanupPointExpr (built-in class)


      	gcc.Expression.gcc.CMaybeConstExpr (built-in class)


      	gcc.Expression.gcc.CompoundExpr (built-in class)


      	gcc.Expression.gcc.CompoundLiteralExpr (built-in class)


      	gcc.Expression.gcc.CondExpr (built-in class)


      	gcc.Expression.gcc.CtorInitializer (built-in class)


      	gcc.Expression.gcc.DlExpr (built-in class)


      	gcc.Expression.gcc.DotProdExpr (built-in class)


      	gcc.Expression.gcc.DotstarExpr (built-in class)


      	gcc.Expression.gcc.EmptyClassExpr (built-in class)


      	gcc.Expression.gcc.ExcessPrecisionExpr (built-in class)


      	gcc.Expression.gcc.ExprPackExpansion (built-in class)


      	gcc.Expression.gcc.ExprStmt (built-in class)


      	gcc.Expression.gcc.FdescExpr (built-in class)


      	gcc.Expression.gcc.FmaExpr (built-in class)


      	gcc.Expression.gcc.InitExpr (built-in class)


      	gcc.Expression.gcc.MessageSendExpr (built-in class)


      	gcc.Expression.gcc.ModifyExpr (built-in class)


      	gcc.Expression.gcc.ModopExpr (built-in class)


      	gcc.Expression.gcc.MustNotThrowExpr (built-in class)


      	gcc.Expression.gcc.NonDependentExpr (built-in class)


      	gcc.Expression.gcc.NontypeArgumentPack (built-in class)


      	gcc.Expression.gcc.NullExpr (built-in class)


      	gcc.Expression.gcc.NwExpr (built-in class)


      	gcc.Expression.gcc.ObjTypeRef (built-in class)


      	gcc.Expression.gcc.OffsetofExpr (built-in class)


      	gcc.Expression.gcc.PolynomialChrec (built-in class)


      	gcc.Expression.gcc.PostdecrementExpr (built-in class)


      	gcc.Expression.gcc.PostincrementExpr (built-in class)


      	gcc.Expression.gcc.PredecrementExpr (built-in class)


      	gcc.Expression.gcc.PredictExpr (built-in class)


      	gcc.Expression.gcc.PreincrementExpr (built-in class)


      	gcc.Expression.gcc.PropertyRef (built-in class)


      	gcc.Expression.gcc.PseudoDtorExpr (built-in class)


      	gcc.Expression.gcc.RealignLoad (built-in class)


      	gcc.Expression.gcc.SaveExpr (built-in class)


      	gcc.Expression.gcc.ScevKnown (built-in class)


  

  	
      	gcc.Expression.gcc.ScevNotKnown (built-in class)


      	gcc.Expression.gcc.SizeofExpr (built-in class)


      	gcc.Expression.gcc.StmtExpr (built-in class)


      	gcc.Expression.gcc.TagDefn (built-in class)


      	gcc.Expression.gcc.TargetExpr (built-in class)


      	gcc.Expression.gcc.TemplateIdExpr (built-in class)


      	gcc.Expression.gcc.ThrowExpr (built-in class)


      	gcc.Expression.gcc.TruthAndExpr (built-in class)


      	gcc.Expression.gcc.TruthAndifExpr (built-in class)


      	gcc.Expression.gcc.TruthNotExpr (built-in class)


      	gcc.Expression.gcc.TruthOrExpr (built-in class)


      	gcc.Expression.gcc.TruthOrifExpr (built-in class)


      	gcc.Expression.gcc.TruthXorExpr (built-in class)


      	gcc.Expression.gcc.TypeExpr (built-in class)


      	gcc.Expression.gcc.TypeidExpr (built-in class)


      	gcc.Expression.gcc.VaArgExpr (built-in class)


      	gcc.Expression.gcc.VecCondExpr (built-in class)


      	gcc.Expression.gcc.VecDlExpr (built-in class)


      	gcc.Expression.gcc.VecInitExpr (built-in class)


      	gcc.Expression.gcc.VecNwExpr (built-in class)


      	gcc.Expression.gcc.WidenMultMinusExpr (built-in class)


      	gcc.Expression.gcc.WidenMultPlusExpr (built-in class)


      	gcc.Expression.gcc.WithCleanupExpr (built-in class)


      	gcc.Expression.gcc.WithSizeExpr (built-in class)


      	gcc.FieldDecl (built-in class)


      	gcc.FloatType (built-in class)


      	gcc.Function (built-in class)


      	gcc.FunctionDecl (built-in class)


      	gcc.FunctionType (built-in class)


      	gcc.FunctionType.gccutils.get_nonnull_arguments() (built-in function)


      	gcc.GCC_VERSION (built-in variable)


      	gcc.get_callgraph_nodes() (built-in function)


      	gcc.get_dump_base_name() (built-in function)


      	gcc.get_dump_file_name() (built-in function)


      	gcc.get_gcc_version() (built-in function)


      	gcc.get_global_namespace() (built-in function)


      	gcc.get_option_dict() (built-in function)


      	gcc.get_option_list() (built-in function)


      	gcc.get_parameters() (built-in function)


      	gcc.get_plugin_gcc_version() (built-in function)


      	gcc.get_translation_units() (built-in function)


      	gcc.get_variables() (built-in function)


      	gcc.Gimple (built-in class)


      	gcc.GimpleAsm (built-in class)


      	gcc.GimpleAssign (built-in class), [1]


      	gcc.GimpleCall (built-in class)


      	gcc.GimpleCond (built-in class)


      	gcc.GimpleLabel (built-in class)


      	gcc.GimpleNop (built-in class)


      	gcc.GimplePass (built-in class)


      	gcc.GimplePhi (built-in class)


      	gcc.GimpleReturn (built-in class)


      	gcc.GimpleSwitch (built-in class)


      	gcc.inform() (built-in function)


      	gcc.IntegerType (built-in class)


      	gcc.IpaPass (built-in class)


      	gcc.is_lto() (built-in function)


      	gcc.Location (built-in class)


      	gcc.maybe_get_identifier() (built-in function)


      	gcc.MemRef (built-in class)


      	gcc.MethodType (built-in class)


      	gcc.NamespaceDecl (built-in class)


      	gcc.Option (built-in class)


      	gcc.Parameter (built-in class)


      	gcc.ParmDecl (built-in class)


      	gcc.Pass (built-in class)


      	gcc.permerror() (built-in function)


      	gcc.PLUGIN_ATTRIBUTES (built-in variable)


      	gcc.PLUGIN_FINISH (built-in variable)


      	gcc.PLUGIN_FINISH_DECL (built-in variable)


      	gcc.PLUGIN_FINISH_TYPE (built-in variable)


      	gcc.PLUGIN_FINISH_UNIT (built-in variable)


      	gcc.PLUGIN_PASS_EXECUTION (built-in variable)


      	gcc.PLUGIN_PRE_GENERICIZE (built-in variable)


      	gcc.PointerType (built-in class)


      	gcc.RecordType (built-in class)


      	gcc.Reference (built-in class)


      	gcc.register_attribute() (built-in function)


      	gcc.register_callback() (built-in function)


      	gcc.ResultDecl (built-in class)


      	gcc.RichLocation (built-in class)


      	gcc.Rtl (built-in class)


      	gcc.RtlPass (built-in class)


      	gcc.set_location() (built-in function)


      	gcc.SimpleIpaPass (built-in class)


      	gcc.SsaName (built-in class)


      	gcc.Statement (built-in class)


      	gcc.TranslationUnitDecl (built-in class)


      	gcc.Tree (built-in class)


      	gcc.Type (built-in class)


      	gcc.Unary (built-in class)


      	gcc.Unary.gcc.AbsExpr (built-in class)


      	gcc.Unary.gcc.AddrSpaceConvertExpr (built-in class)


      	gcc.Unary.gcc.BitNotExpr (built-in class)


      	gcc.Unary.gcc.CastExpr (built-in class)


      	gcc.Unary.gcc.ConjExpr (built-in class)


      	gcc.Unary.gcc.ConstCastExpr (built-in class)


      	gcc.Unary.gcc.ConvertExpr (built-in class)


      	gcc.Unary.gcc.DynamicCastExpr (built-in class)


      	gcc.Unary.gcc.FixedConvertExpr (built-in class)


      	gcc.Unary.gcc.FixTruncExpr (built-in class)


      	gcc.Unary.gcc.FloatExpr (built-in class)


      	gcc.Unary.gcc.NegateExpr (built-in class)


      	gcc.Unary.gcc.NoexceptExpr (built-in class)


      	gcc.Unary.gcc.NonLvalueExpr (built-in class)


      	gcc.Unary.gcc.NopExpr (built-in class)


      	gcc.Unary.gcc.ParenExpr (built-in class)


      	gcc.Unary.gcc.ReducMaxExpr (built-in class)


      	gcc.Unary.gcc.ReducMinExpr (built-in class)


      	gcc.Unary.gcc.ReducPlusExpr (built-in class)


      	gcc.Unary.gcc.ReinterpretCastExpr (built-in class)


      	gcc.Unary.gcc.StaticCastExpr (built-in class)


      	gcc.Unary.gcc.UnaryPlusExpr (built-in class)


      	gcc.VarDecl (built-in class)


      	gcc.Variable (built-in class)


      	gcc.VectorType (built-in class)


      	gcc.Version (built-in class)


      	gcc.warning() (built-in function)


      	gccutils.callgraph_to_dot() (built-in function)


      	gccutils.get_field_by_name() (built-in function)


      	gccutils.get_global_typedef() (built-in function)


      	gccutils.get_global_vardecl_by_name() (built-in function)


      	gccutils.get_src_for_loc() (built-in function)


      	gccutils.get_variables_as_dict() (built-in function)


      	gccutils.pformat() (built-in function)


      	gccutils.pprint() (built-in function)


      	get_block_for_label() (gcc.Cfg method)


      	get_by_name() (gcc.Pass class method)


      	get_roots() (gcc.Pass class method)


      	get_symbol() (gcc.Binary class method)

      
        	(gcc.Comparison class method)


        	(gcc.Expression class method)


        	(gcc.Reference class method)


        	(gcc.Unary class method)


      


      	gimple (gcc.BasicBlock attribute)


  





H


  	
      	help (gcc.Option attribute)

      
        	(gcc.Parameter attribute)


      


  

  	
      	high (gcc.CaseLabelExpr attribute)


  





I


  	
      	ImagpartExpr (built-in class)


      	in_system_header (gcc.Location attribute)


      	index (gcc.ArrayRef attribute)

      
        	(gcc.BasicBlock attribute)


      


      	indexvar (gcc.GimpleSwitch attribute)


      	IndirectRef (built-in class)


      	initial (gcc.VarDecl attribute)


      	is_artificial (gcc.Declaration attribute)


      	is_builtin (gcc.Declaration attribute)


  

  	
      	is_driver (gcc.Option attribute)


      	is_enabled (gcc.Option attribute)


      	is_optimization (gcc.Option attribute)


      	is_private (gcc.FunctionDecl attribute)


      	is_protected (gcc.FunctionDecl attribute)


      	is_public (gcc.FunctionDecl attribute)


      	is_static (gcc.FunctionDecl attribute)


      	is_target (gcc.Option attribute)


      	is_variadic (gcc.FunctionType attribute)


      	is_warning (gcc.Option attribute)


  





L


  	
      	labels (gcc.GimpleSwitch attribute)


      	language (gcc.TranslationUnitDecl attribute)


      	lhs (gcc.GimpleAssign attribute), [1]

      
        	(gcc.GimpleCall attribute)


        	(gcc.GimpleCond attribute)


        	(gcc.GimplePhi attribute)


      


      	line (gcc.Location attribute)


      	loc (gcc.Gimple attribute)

      
        	(gcc.Rtl attribute)


      


  

  	
      	local_decls (gcc.Function attribute)


      	location (gcc.Binary attribute)

      
        	(gcc.Comparison attribute)


        	(gcc.Declaration attribute)


        	(gcc.Expression attribute)


        	(gcc.Reference attribute)


        	(gcc.Unary attribute)


      


      	lookup() (gcc.NamespaceDecl method)


      	low (gcc.CaseLabelExpr attribute)


  





M


  	
      	max_value (gcc.IntegerType attribute)

      
        	(gcc.Parameter attribute)


      


      	MemberRef (built-in class)


  

  	
      	methods (gcc.RecordType attribute)


      	min_value (gcc.IntegerType attribute)

      
        	(gcc.Parameter attribute)


      


  





N


  	
      	name (gcc.Declaration attribute)

      
        	(gcc.FieldDecl attribute)


        	(gcc.Pass attribute)


        	(gcc.Type attribute)


      


  

  	
      	namespaces (gcc.NamespaceDecl attribute)


      	next (gcc.Pass attribute)


      	noreturn (gcc.GimpleCall attribute)


  





O


  	
      	offset_column() (gcc.Location method)


      	OffsetRef (built-in class)


      	operand (gcc.MemRef attribute)

      
        	(gcc.Unary attribute)


      


  

  	
      	operands (gcc.Rtl attribute)


      	option (gcc.Parameter attribute)


  





P


  	
      	phi_nodes (gcc.BasicBlock attribute)


      	pointer (gcc.Type attribute)


      	precision (gcc.FloatType attribute)

      
        	(gcc.IntegerType attribute)


      


  

  	
      	preds (gcc.BasicBlock attribute)


      	properties_destroyed (gcc.Pass attribute)


      	properties_provided (gcc.Pass attribute)


      	properties_required (gcc.Pass attribute)


  





R


  	
      	range (gcc.ArrayType attribute)


      	RealpartExpr (built-in class)


      	register_after() (gcc.Pass method)


      	register_before() (gcc.Pass method)


      	replace() (gcc.Pass method)


      	restrict


      	restrict_equivalent


  

  	
      	result (gcc.FunctionDecl attribute)


      	retval (gcc.GimpleReturn attribute)


      	revision (gcc.Version attribute)


      	rhs (gcc.GimpleAssign attribute), [1]

      
        	(gcc.GimpleCall attribute)


        	(gcc.GimpleCond attribute)


      


      	rtl (gcc.BasicBlock attribute)


  





S


  	
      	ScopeRef (built-in class)


      	signed_equivalent (gcc.IntegerType attribute)


      	sizeof (gcc.Type attribute)


      	src (gcc.Edge attribute)


      	start (gcc.Function attribute)

      
        	(gcc.Location attribute)


      


  

  	
      	static (gcc.VarDecl attribute)


      	static_pass_number (gcc.Pass attribute)


      	str_no_uid (gcc.Gimple attribute)

      
        	(gcc.Tree attribute)


      


      	string (gcc.GimpleAsm attribute)


      	sub (gcc.Pass attribute)


      	succs (gcc.BasicBlock attribute)


  





T


  	
      	target (gcc.CaseLabelExpr attribute)

      
        	(gcc.ComponentRef attribute)


      


      	TargetMemRef (built-in class)


  

  	
      	text (gcc.Option attribute)


      	true_label (gcc.GimpleCond attribute)


      	true_value (gcc.Edge attribute)


      	type (gcc.Tree attribute)


  





U


  	
      	unalias() (gcc.NamespaceDecl method)


      	UnconstrainedArrayRef (built-in class)


  

  	
      	unqualified_equivalent


      	unsigned (gcc.IntegerType attribute)


      	unsigned_equivalent (gcc.IntegerType attribute)


  





V


  	
      	values (gcc.EnumeralType attribute)


      	var (gcc.SsaName attribute)


      	vars (gcc.Block attribute)


  

  	
      	version (gcc.SsaName attribute)


      	ViewConvertExpr (built-in class)


      	volatile


      	volatile_equivalent


  





W


  	
      	walk_tree() (gcc.Gimple method)


  







          

      

      

    

  

    
      
          
            
  Usage:

gcc-with-python PATH_TO_PYTHON_SCRIPT GCC PARAMETERS





gcc-with-python is a helper script which invokes GCC, whilst loading the
Python plugin for GCC, running the given python script.

Example:

gcc-with-python show-ssa.py example.c







          

      

      

    

  _static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          GCC Python plugin
        


        		
          Requirements
        


        		
          Prebuilt-packages
        


        		
          Building the plugin from source
          
            		
              Build-time dependencies
            


            		
              Building the code
            


          


        


        		
          Basic usage of the plugin
          
            		
              Debugging your script
            


            		
              Accessing parameters
            


            		
              Adding new passes to the compiler
            


            		
              Wiring up callbacks
            


          


        


        		
          Global data access
        


        		
          Overview of GCC’s internals
        


        		
          Example scripts
          
            		
              show-docs.py
            


            		
              show-passes.py
            


            		
              show-gimple.py
            


            		
              show-ssa.py
            


            		
              show-callgraph.py
            


          


        


        		
          Working with C code
          
            		
              “Hello world”
            


            		
              Spell-checking string constants within source code
            


            		
              Finding global variables
            


          


        


        		
          Locations
        


        		
          Generating custom errors and warnings
        


        		
          Working with functions and control flow graphs
        


        		
          gcc.Tree and its subclasses
          
            		
              Blocks
            


            		
              Declarations
            


            		
              Types
            


            		
              Constants
            


            		
              Binary Expressions
            


            		
              Unary Expressions
            


            		
              Comparisons
            


            		
              References to storage
            


            		
              Other expression subclasses
            


            		
              Statements
            


            		
              SSA Names
            


          


        


        		
          Gimple statements
        


        		
          Optimization passes
          
            		
              Working with existing passes
            


            		
              Creating new optimization passes
            


            		
              Dumping per-pass information
            


          


        


        		
          Working with callbacks
        


        		
          Creating custom GCC attributes
          
            		
              Using the preprocessor to guard attribute usage
            


          


        


        		
          Usage example: a static analysis tool for CPython extension code
          
            		
              gcc-with-cpychecker
              
                		
                  Additional arguments for gcc-with-cpychecker
                


              


            


            		
              Reference-count checking
              
                		
                  Assumptions and configuration
                


              


            


            		
              Error-handling checking
            


            		
              Errors in exception-handling
            


            		
              Format string checking
              
                		
                  Associating PyTypeObject instances with compile-time types
                


              


            


            		
              Verification of PyMethodDef tables
            


            		
              Additional tests
            


            		
              Limitations and caveats
            


            		
              Ideas for future tests
            


            		
              Reusing this code for other projects
            


            		
              Common mistakes
              
                		
                  Missing Py_INCREF() on Py_None
                


                		
                  Reference leak in Py_BuildValue
                


              


            


          


        


        		
          Success Stories
          
            		
              The GNU Debugger
            


            		
              LibreOffice
            


            		
              psycopg
            


            		
              pycups
            


            		
              python-krbV
            


            		
              Bugs found in itself
            


          


        


        		
          Getting Involved
          
            		
              Ideas for using the plugin
            


            		
              Tour of the C code
            


            		
              Using the plugin to check itself
            


            		
              Test suite
            


            		
              Debugging the plugin’s C code
              
                		
                  Handy tricks
                


              


            


            		
              Patches
            


          


        


        		
          Documentation
        


        		
          Miscellanea
          
            		
              Interprocedural analysis (IPA)
            


            		
              Whole-program Analysis via Link-Time Optimization (LTO)
            


            		
              Inspecting GCC’s command-line options
            


            		
              Working with GCC’s tunable parameters
            


            		
              Working with the preprocessor
            


            		
              Version handling
            


            		
              Register Transfer Language (RTL)
            


          


        


        		
          Release Notes
          
            		
              0.16
            


            		
              0.15
            


            		
              0.14
            


            		
              0.13
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Improvements to gcc-with-cpychecker
                


                		
                  Contributors
                


              


            


            		
              0.12
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Internal improvements to gcc-with-cpychecker
                


              


            


            		
              0.11
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Internal improvements to gcc-with-cpychecker
                


              


            


            		
              0.10
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Improvements to gcc-with-cpychecker
                


              


            


            		
              0.9
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Improvements to gcc-with-cpychecker
                


              


            


            		
              0.8
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Improvements to gcc-with-cpychecker
                


              


            


            		
              0.7
              
                		
                  Changes to the GCC Python Plugin
                


                		
                  Improvements to “cpychecker”
                


              


            


          


        


        		
          Appendices
          
            		
              All of GCC’s passes
              
                		
                  The lowering passes
                


                		
                  The “small IPA” passes
                


                		
                  The “regular IPA” passes
                


                		
                  Passes generating Link-Time Optimization data
                


                		
                  The “all other passes” catch-all
                


              


            


            		
              gcc.Tree operators by symbol
            


          


        


      


    
  

_static/up.png





_images/sample-callgraph.png
main

b

helper_function

printf

'

__builtin_puts






_images/new-html-error-report.png
CC Python Plug

204

E

memory leak: ob_refcnt of ‘¥

27 PyObject +
24 test (PyObject *self, PyObject *args)

PyObject *dicth;
PyObject *dicts;

dictA = Pybict New();
if (IdictA) return NULL;

/% dictA now has a refont of 1

+

dictB = Pybict New();

Report: 1

when PyDict_New() succeeds 32

“+dictA’ was allocated at: dictA = PyDict New();

taking False path 33
37

when PyDict_New() fails

7% the above error-handling code Leaks the ref on dictA %/

Py_DECREF(dictA);

taking True path

was expecting final owned ob_refcnt of ‘*dictA' to be 0
since nothing references it but final ob_refcnt is refs: 1
owned

return dicts;






_images/sample-html-error-report.png
Flle:  input.c
Function: test
Emor:  ob_refent of "list'is 1 too high

22 Pyobject *
test(Pyobject *self, Pyobject *args)
{

Pyobject *list;
Pyobject *item;

istObject allocated at:  list = PyList_New(1);
fent is now refs: 1+ N where N >

_FromLong0 fails
hand

ect: it's missing an

7

E s steals a reference to item; item is not leaked when we get here: */
36 Pylist_SetItem(list, 0, item);

37 return list;

38}

ob_refcnt of "*list"is 1100 high
was expecting final ob_refcnt to be N + 0 (for some unknown N)
but final ob_refent is N + 1





_images/sample-supergraph.png
el

tests/examples/lto/input-main.c

tests/examples/lto/input-g.c

27 if (b==2) {
if (b_1(D)

28 g(b, q); /* contrived infinite recursion */
A

8 (_1(D). ¢ 2D));

false ‘within function

.

main

ENTRY int main(int arge,char * * argv)

int *r;

\

27 int #r = (int*)farge);
s

2= f (arge_I(D));

tests/examples/lto/input-f.c

f

ENTRY void * f(int a)
void * D.2388;
void * p;

27 if (a) {

if (1.2(D) 1= 0)

rue false.

28 void *p = malloc(4096),
s
p_3 = malloc (4096);

v

31 return NULL;
A

D.2388_5 = 0B;

29 returnp;
n

D.2388 4 =p_3;

of f

D.2388_1 = PHI <D.2388_4(3), D.2388_5(4)>

/

<LO>

return D.2388_1;

EXIT f

ithin function

P

27 int *r = (int*)f(arge);
s

2= f (arge_I(D));

28 r[0] = 42; /* BUG: the malloc in f could have failed */
A

2= 42
29 glarge, 1)
&
g (arge_1(D), r_2);
L} feallof g ithin function

28 g(b, q); /* contrived infinite recursion */
A

8 (_1(D). ¢ 2D));

ENTRY void g(int b,void * q)

4

30 free(q):
s

free (q_2(D));

return to g

31}
A

return;

N

EXIT g

.- ‘return to main

29 glarge, r);
8 (arge_I(D), r_2);

N

30 free(r); /* BUG: doublefree here, given that g frees the ptr %/
A

fiee (12);

EXIT main

eturn to main






_images/sample-gimple-cfg.png
BLOCK ©
entry

}alllhru

BLOCK 2
38 printf("argc: %i", argc)
D.3258 = (const char * restrict) &'argc: %i\n"[0];
printf (D.3258, argc);
40 for (i = 0; i < argc; i++) {
i=0;
allthru
BLOCK 4
40 for (i = 0; i < argc; i++) {
if (i < argc)
true falhhru false.
BLOCK 3
41 printf("argv[%i]: %s", argv[il])
D.3259 = (long unsigned int) i;
D.3260 = D.3259 * 8;
D.3261 = argv + D.3260;
41 printf("argv[%i]: %s", argv[il])
D.3262 = *D.3261;
D.3263 = (const char * restrict) &'argv[%i]: %s\n"[0]
printf (D.3263, D.3262);
40 for (i = 0; i < argc; i++) {
i=1i+1;

BLOCK 5
44 helper_function()
46 return 0;

helper_function ();

D.3264 = 0;
return D.3264;

BLOCK 1
exit






_images/sample-gimple-ssa-cfg.png
BLOCK ©
entry

}alllhru

BLOCK 2
38 printf("argc: %i", argc)
D.3258 2 = (const char * restrict) &"argc: %i\n"[0];
printf (D.3258_2, argc_3(D));
40 for (i =0; 1 < argc; i++) {
id4=0;
allthru
BLOCK 4
i1 =PHI <i_4(2), i_11(3)>
40 for (i =0; 1 < argc; i++) {
if (i_1 < argc_3(D))
/true [fallthru false.
BLOCK 3
41 printf("argv[%i]: %s", argv[il])
D.3259 5 = (long unsigned int) i_1;
D.3260 6 = D.3259 5 * 8;
D.3261 8 = argv_7(D) + D.3260_6;
41 printf("argv[%i]: %s", argv[il])
D.3262_9 = *D.3261_8;
D.3263_10 = (const char * restrict) &"argv[%i]: %s\n"[0]
printf (D.3263_10, D.3262 9);
40 for (i = 0; i < argc; i++) {

i11=d1+1;

BLOCK 5
44 helper_function()
46 return 0;

helper_function ();

D.3264 12 = 0;
return D.3264_12;

BLOCK 1
exit






_static/comment-bright.png





_static/ajax-loader.gif





